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Don’t just read it; fight it! Ask your own question, look for
your own examples, discover your own proofs. Is the

hypothesis necessary? Is the converse true? What happens
in the classical special case? What about the degenerate

cases? Where does the proof use the hypothesis?

– Paul Halmos





1: This one is not that
casual…!

Preface

This lecture note is as boring as it gets, since it tries to be politically correct and does not
contain:

1. Your own effort in trying new things in mathematics;
2. Your own taste of what is beautiful and what is not;
3. Your happiness in understanding a concept or finding a proof;
4. Your failures and experiences to refine your future choices;
5. Your interaction and teamwork with your friends;
6. Your lunch hours, roadtrips, family, dreams, and drunken moments (some by alco-

hol, some by art, some by people);
7. Your splendid life with all the possibilities ahead.

The goal of this lecture note is to simply provide some remainders in case one needs them.
Like a photo album. In some sense, the primary goal would be for you to understand
some mathematical concepts, and gradually you should be able to express your ideas in
mathematical terms with ease.

It is often asked about a reference book for this course. I don’t want to recommend any-
thing in particular, but I would recommend to have at least one “classical” textbook at
hand, preferably with detailed solutions to the exercises. Try the exercise yourself first,
and when you really get stuck, read the solution, then try the exercise again several days
later.

Instead I could recommand some “casual” books:

1. «Gödel, Escher, Bach: An Eternal Golden Braid», Hofstadter, Basic Books.
2. «Proofs from THE BOOK», Aigner-Ziegler, Springer.1

3. «How to solve it», Pólya, Princeton University Press.
4. «Flatland: A Romance of Many Dimensions», Abbott, Seeley & Co.

Have fun!

Yichao Huang

P.S. Although this note can be publicly distributed and reused, it is not my intention. It
thus contains many personal touches and certainly does not stand the test of time.
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1: Does “The government now recom-
mands wearing masks” implies “The gov-
ernment recommanded against wearing
masks before”?

2: In short, this course BSMA1002 is
about the symbol ′ and the next course
BSMA1003 is about the symbol ∫. There
are subtleties that we don’t want to go
into in this course, for example for the
symbol “=”, it can refer to an “equality”
or an “equation” depending on the con-
text. Apparently in French the distinction
is made, but not in English.

3: Exclusive or or exclusive disjunction
is a logical operation that outputs true
only when inputs differ (one is true, the
other is false). In logic, or by itself means
the inclusive or, distinguished from an ex-
clusive or, which is false when both of its
arguments are true, while an ”or” is true
in that case. In sum, 𝐴 ∨ 𝐵 is true if 𝐴 is
true, or if 𝐵 is true, or if both 𝐴 and 𝐵 are
true.

A “gentle” introduction to the
language of mathematics 1

Since this notes is written during the Corona time, let us start by review-
ing some common misunderstandings.

Do the following sentences convey the same message?1

1. The government has no recommandation for wearing masks.
2. The government does not recommand wearing masks.
3. The government recommand against wearing masks.

1.1 Mathematical symbols

Some symbols are specific to mathematics, such as

∀ for all

∃ there exist(s) […] (such that)

∨ or

∧ and

∞ infinity

and many more.2

One uses these symbols to write statements in mathematics. For example,
one can write

∀𝑥 ∈ ℝ, (𝑥2 − 1 ≥ 0) ∨ (𝑥3 + 1 ≥ 0).
This reads (from left to right!) “for all real number 𝑥 , (we have) 𝑥2 − 1 ≥ 0
or 𝑥3 + 1 ≥ 0”. In practice, the symbol ∨ is not that often used, and one
encounters more often

∀𝑥 ∈ ℝ, (𝑥2 − 1 ≥ 0) or (𝑥3 + 1 ≥ 0).

Notice that the meaning of the word “or” is inexclusive, meaning that
both alternatives can be true at the same time.3 Also, notice that a state-
ment does not have to be true, unfortunately it seems that my random
example above is true…

One can “operate” on statements. For example, with the negation sym-
bol

¬ not

one can “negate” a statement:

¬ (∀𝑥 ∈ ℝ, (𝑥2 − 1 ≥ 0) or (𝑥3 + 1 ≥ 0)) .

What does it mean? How do one write it in plain language?

(Before moving on, one could first to come up with a personal attempt.
The goal is not to succeed at the first try, but to, inter alia, figure out some
patterns and be aware of the possible difficulties.)

https://en.wikipedia.org/wiki/Equation


2 1 A “gentle” introduction to the language of mathematics

4: Don’t try to remember these sentences,
but rather, do some examples and under-
stand the principle behind it.

5: The first two principles are variants of
the so-called “De Morgan’s laws”.

6: Which phrase is an implication in the
classical syllogism “All men are mortal.
Socrates is a man. Therefore, Socrates is
mortal.”? Or actually, how many implica-
tions are there?
7: In some Finnish textbooks it is writ-
ten →. Different people use different no-
tations, but usually they look similar and
understandable by context.

8: Or one writes simple 𝑇 and 𝐹 for “true”
and “false”. In real life, you will probably
soon forget about this table.

The general rule for negating a statement is the following: for any state-
ments 𝑃 and 𝑄,4

1. ¬(𝑃 ∨ 𝑄) is ¬𝑃 ∧ ¬𝑄;
2. ¬(𝑃 ∧ 𝑄) is ¬𝑃 ∨ ¬𝑄;
3. ¬(∀𝑥, 𝑃) is ∃𝑥, ¬𝑃 ;
4. ¬(∃𝑥, 𝑃) is ∀𝑥, ¬𝑃 .

(Say these phrases with a less obscure language!)5

For the example above, an equivalent way of writing the statement

¬ (∀𝑥 ∈ ℝ, (𝑥2 − 1 ≥ 0) or (𝑥3 + 1 ≥ 0))

is
∃𝑥 ∈ ℝ, ¬(𝑥2 − 1 ≥ 0) and ¬(𝑥3 + 1 ≥ 0).

And if we really want to get rid of the negation symbol, we can also write
it as

∃𝑥 ∈ ℝ, (𝑥2 − 1 < 0) and (𝑥3 + 1 < 0).

Remark 1.1.1 In practice, this means that if 𝑃 is some property and if
one wants to disprove a statement of type “for all 𝑥 , 𝑃 is true” (∀𝑥, 𝑃 ),
one should show the existence of some 𝑥 such that 𝑃 is false (∃𝑥, ¬𝑃 ).
Showing that such 𝑥 exists can be done by explicit construction (“pulling
a rabbit out of a hat”), or by abstraction (without necessarily knowing
all the properties of such 𝑥).

Implications are highly frequent statements in mathematics.6 If 𝑃 and 𝑄
are two properties (or two statements), the symbol7

⇒ implies

used in the following statement

𝑃 ⇒ 𝑄

means “If 𝑃 is true, then 𝑄 is true”. It does not give information on 𝑄 if 𝑃
is false.

One can draw a truth table to understand better the symbol ⇒. In the
table, 1 means “true” and 0 means “false”, and I leave you to figure out
the rest.8

P Q P⇒Q
1 1 1
1 0 0
0 1 1
0 0 1

It is quite useful to realize that the implication symbol can be replaced
by other symbols before. At first sight this mights seem strange, but let
us draw the table of truth for

(¬𝑃) ∨ 𝑄
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9: Try to draw the truth table (on a paper,
on an electronic device or in your head)!

11: Proof by contradiction is formulated
as 𝑃 ≡ 𝑃 ∨ ⊥ ≡ ¬(¬𝑃) ∨ ⊥ ≡ ¬𝑃 → ⊥,
where ⊥ is a logical contradiction or a
false statement (a statement which true
value is false). If ⊥ is reached via ¬𝑃 via
a valid logic, then ¬𝑃 → ⊥ is proved as
true so 𝑃 is proved as true. I didn’t bother
to read the above phrases myself (I copied
it from Wikipedia), since in practice, one
should seize the idea (which I think you
all have it naturally) rather than relying
on formal manipulation of symbols. It is
up to you to find out what is the best way
to understand a new concept!

12: To be annoyingly precise, here we are
assuming a basic axiom of logic called the
law of noncontradiction.

and compare it to the table before:

P Q ¬P (¬P) ∨Q
1 1 0 1
1 0 0 0
0 1 1 1
0 0 1 1

Proposition 1.1.1 The statement

𝑃 ⇒ 𝑄

is equivalent to
(¬𝑃) ∨ 𝑄.

The equivalence of two statements 𝑃 and 𝑄, with the symbol

𝑃 ≡ 𝑄

should be understood as two implications:

𝑃 ⇒ 𝑄 and 𝑄 ⇒ 𝑃.

It simply says that they are either both true or both false.9

Proposition 1.1.2 The following statements are equivalent:a

1.
𝑃 ⇒ 𝑄.

2.
(¬𝑃) ∨ 𝑄.

a Personal dedication to my undergrad teacher Mr. Mohan: “LASSE” (Les assertions suiv-
antes sont équivalentes).

Proposition 1.1.3 The following statements are equivalent:10 10: So, what does “((¬𝑃) ∨ 𝑄) ∧ ((¬𝑄) ∨ 𝑃)”
mean?

1.
𝑃 ≡ 𝑄.

2.
(𝑃 ⇒ 𝑄) ∧ (𝑄 ⇒ 𝑃).

It is a little self-referencing if you take it as the definition of equivalence!

Proof by contradiction is also commonly used in mathematics (and in
everyday life).11 In practice, this often means the following steps:

1. Suppose the negation of what you are proving is true;
2. Use this information to deduce something that is known to be false;
3. Therefore, you have a contradiction (since “true” cannot imply “false”),

and the original statement must be true.12

https://en.wikipedia.org/wiki/Proof_by_contradiction
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13: To be honest, I don’t know the answer
to these questions even though I wrote
down the proof above: this is only because
I have gathered enough experience, and
interpreted subconsciously the principle
in my own way.

14: Even this one.

Example 1.1.1 There is no smallest strictly positive real number.

Proof. Suppose the opposite and let 𝑟 > 0 be the smallest strictly posi-
tive real number. But 𝑟 /2 is a real number, 𝑟 /2 is strictly smaller than 𝑟
and 𝑟/2 is strictly positive. We have found a strictly positive real num-
ber smaller than 𝑟 : contradiction.

The above proof is very concise. In the beginning, you probably want
to write a more detailed proof to make sure that it is correct and under-
standable. Now, as an exercise, can you write down the statement in the
example with logical symbols? Howwould you write down its negation?
What are we doing in the above proof?13

Figure 1.1: Whitehead and Russell prov-
ing 1 + 1 = 2. Full story here.

Remark 1.1.2 Of course, mathematicians (or scientists) never write
with symbols only, unless you are a hardcore logician. You will soon
know where to draw the line: the above is just a showcase of the math-
ematical rigor.

One of the advantages of mathematics compared to other science, is that
(almost) all proofs are reproducible and can be checked.14 It is a good
way to train your critical thinking skills: by doing mathematics (the right
way!), you are living one of the rare moments where you can distinguish
completely right from wrong and form a clear judgement.

1.2 Mathematical induction

One of the early difficulties of transitioning into a good undergrad stu-
dent is to write mathematical sound and concise proofs. We have already
seen what is proof by contradiction; let us review another classical proof
technique: proof by induction.

Here is a learning technique: you can start by an example before read-
ing the theoretical descriptions. So let us search “proof by induction”
on the internet, go to the Wikipedia page, and check out the following
example:

Example 1.2.1 (Sum of consecutive natural numbers) For any integer

https://www.quantamagazine.org/titans-of-mathematics-clash-over-epic-proof-of-abc-conjecture-20180920/
https://en.wikipedia.org/wiki/Principia_Mathematica
https://en.wikipedia.org/wiki/Mathematical_induction
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15: The index 𝑖 is called the dummy in-
dex; you can replace it with other symbols
such as 𝑗 or 𝑘 and it only governs what
happens inside the summation symbol.

𝑛 ≥ 0, we have

0 + 1 + 2 + ⋯ + 𝑛 = 𝑛(𝑛 + 1)
2 .

One can rewrite the sum using the symbol ∑:15

𝑛
∑
𝑖=0

𝑖 = 0 + 1 + 2 + ⋯ + 𝑛.

A longer proof is the following. Rigorously speaking, the proof starts by
defining a statement 𝑃(𝑛) for each interger 𝑛 ≥ 0:

𝑃(𝑛) ∶ 0 + 1 + 2 + ⋯ + 𝑛 = 𝑛(𝑛 + 1)
2 .

For now we don’t know if for a given interger 𝑛, 𝑃(𝑛) is true or not.

We then start by checking the base case (or “initialization”): in our case,
that 𝑃(0) is true. Notice that 𝑛 = 0 is the smallest case possible. This is
verified usually directly, i.e. by checking that

0 = 0 ⋅ 1
2 .

Then the “inductive step” consists of checking the implication

𝑃(𝑛) ⇒ 𝑃(𝑛 + 1)

for all 𝑛 greater or equal to the base case, in our case, 𝑛 ≥ 0. This means
that we suppose 𝑃(𝑛) is true (this is called “induction hypothesis”) for
some 𝑛 ≥ 0 and from this, we show deduce that 𝑃(𝑛 + 1) is also true. So
we suppose that 𝑃(𝑛) is true, i.e. we know that

0 + 1 + 2 + ⋯ + 𝑛 = 𝑛(𝑛 + 1)
2

and we want to prove that 𝑃(𝑛 + 1) is true, i.e.

0 + 1 + 2 + ⋯ + 𝑛 + (𝑛 + 1) = (𝑛 + 1)(𝑛 + 2)
2 .

This follows by observing that

0 + 1 + 2 + ⋯ + 𝑛 + (𝑛 + 1)
=(0 + 1 + 2 + ⋯ + 𝑛) + (𝑛 + 1)

=𝑛(𝑛 + 1)
2 + (𝑛 + 1) (induction hypothesis)

=𝑛
2 + 𝑛 + (2𝑛 + 2)

2
=(𝑛 + 1)(𝑛 + 2)

2 .

In the above chain of equations, we have hightlighted the one where we
used the assumption that 𝑃(𝑛) is true.
The conclusion is that, once we have checked the base case 0 and the
implication 𝑃(𝑛) ⇒ 𝑃(𝑛 + 1) for all 𝑛 ≥ 0, we get that 𝑃(1) is true (since
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𝑃(0) is true and 𝑃(0) ⇒ 𝑃(1)); and then 𝑃(2) is true (since now 𝑃(1) is true
and 𝑃(1) ⇒ 𝑃(2)); …; and that 𝑃(𝑛) is true for every 𝑛 ≥ 0. This argument
is the principle of the mathematical induction.

Now in practice, the following (minimal writing of) proof is enough:

Proof. We prove the proposition by induction.

• Initialization: when 𝑛 = 0, 0 = 0⋅1
2 .

• Induction: suppose that

0 + 1 + 2 + ⋯ + 𝑛 = 𝑛(𝑛 + 1)
2

and prove that

0 + 1 + 2 + ⋯ + 𝑛 + (𝑛 + 1) = (𝑛 + 1)(𝑛 + 2)
2 .

By taking the difference of the above equations, it suffice to show that

𝑛 + 1 = (𝑛 + 1)(𝑛 + 2)
2 − 𝑛(𝑛 + 1)

2 = (𝑛 + 1)(𝑛 + 2 − 𝑛)
2 ,

and this results from a direct algebraic calculation.

• Finally, by mathematical induction, the equation is true for all 𝑛 ∈ ℤ≥0,
thus the proposition.

1.3 Story time: What the Tortoise Said to
Achilles

See here.

1.4 Exercises

Exercise 1.1 Let 𝑥, 𝑦 ∈ ℝ. Show that

|𝑥 + 𝑦| ≤ |𝑥| + |𝑦|,

then
|𝑥 − 𝑦| ≥ ||𝑥| − |𝑦|| .

Give an interpretation of these inequalities by remembering that |𝑥 − 𝑦|
measures the distance between 𝑥 and 𝑦.
Exercise 1.2 Show that the negation of

𝑃 ⇒ 𝑄

is
𝑃 ∧ (¬𝑄).

Translate this exercise into human language.

https://en.wikipedia.org/wiki/What_the_Tortoise_Said_to_Achilles
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16: Then, when you have time, take a (cof-
fee) break and contemplate for a few min-
utes: what is this statement? You don’t
need to have a precise idea, but it is
healthy to think about it.

17: The following expression is called the
Dirichlet kernel.

18: In 2021, you will learn to prove that

√2𝜋𝑛𝑛+
1
2 𝑒−𝑛 ≤ 𝑛! ≤ 𝑒𝑛𝑛+

1
2 𝑒−𝑛 .

19: Don’t hesitate to use a “canonical
search engine” if you don’t knowwhat “ir-
rational number” means.

Exercise 1.3 (Homework) Write the negation of the statement:

(P) ∶ ∀𝜖 > 0, ∃𝛿 > 0, (|𝑥 − 𝑦| ≤ 𝛿) ⇒ (||𝑥| − |𝑦|| ≤ 𝜖).

Use the exercise above to determine if the statement 𝑃 is true or false.16

Exercise 1.4 Let 𝑥, 𝑦 ∈ ℝ. Show that

max(𝑥, 𝑦) = 𝑥 + 𝑦
2 + |𝑥 − 𝑦|

2 .

Write a similar formula for min(𝑥, 𝑦).
Exercise 1.5 Let 0 < 𝑞 < 1. Show by induction that

𝑛
∑
𝑘=0

𝑞𝑘 = 1 + 𝑞 + 𝑞2 + ⋯ + 𝑞𝑛 = 1 − 𝑞𝑛+1
1 − 𝑞 .

As an application, show that with the complex number 𝑖,17

𝑛
∑
𝑘=−𝑛

𝑒𝑖𝑘𝑡 =
sin ( 2𝑛+12 𝑡)
sin ( 12 𝑡)

.

Exercise 1.6 Let 𝑛 > 0 be a positive integer. Show by induction that

𝑛
∑
𝑘=0

𝑘2 = 𝑛(𝑛 + 1)(2𝑛 + 1)
6 .

Exercise 1.7 (∗) Show that for all integer 𝑛 ≥ 4,18

2𝑛 < 𝑛! < 𝑛𝑛 .

Exercise 1.8 (∗) Prove that √2 is an irrational number.19

Hint: you can start by supposing that √2 = 𝑝
𝑞 with 𝑝, 𝑞 positive integers

and try to deduce a contradiction, by studying the parity of 𝑝 and of 𝑞.

Then calculate (√2√2)
√2

and show that there exist two irrational num-

bers 𝑎, 𝑏 such that 𝑎𝑏 is a rational number.

http://www.google.com
http://www.google.com




[WEEK I]
WHAT ARE…SETS?





1: An axiom is a statement taken to be
true; although you have to freedom to
challenge it (and sometimes it could be
hugely rewarding), by doing so you are
basically isolating yourself from the ma-
jority of the scientific community.

2: For a “full” introduction to a naive set
theory, one can check out the book «
Naive set theory » of Paul Halmos. The
first chapter of this book introduces the
Axiom of extension: two sets are equal if
they have the same elements; in general
Halmos is far more superior (both in lan-
guage and in mathematics) than this lec-
ture note.

Sets: definitions and properties 2
A set is a well-defined collection of distinct OBJECTS.

What does that mean?

2.1 Some elements of axiomatic set theory

The axiomatic set theory starts with a list of axioms.1 It is a rather com-
plicated story to define the set theory proprement, so we assume that
you already know the basics and this is more of a remainder. Actually,
I must admit here that I do not have enough expertise to do a complete
survey of even the basics of the axiomatic set theory, so the best we can
do here is to learn by doing.

Let us fix the objective here as to gradually get rid of the Venn diagram
representation of sets, and start to write proper proofs; the actual study
of the foundation of a theory of set would be another story. Recall some
basic elements of the set theory:

Definition 2.1.1 (Elements of a set) A set 𝐸 is a collection of objects. For
each of object 𝑥 in 𝐸, we denote this inclusion by 𝑥 ∈ 𝐸 and we call 𝑥 an
element of 𝐸.
We say a set 𝐸 is well-defined when there is no ambiguity on which
objects belong to 𝐸.a We also require the elements of a set to be distinct.b

a For example, the collection “the world’s greatest countries” is ill-defined.
b For example, {1, 1, 2} is not a set, or that it is the same set as {1, 2}.

For a logician, the above definition is not precise enough, but in this
course we don’t require more than this.2

Definition 2.1.2 (Empty set) There exists a set, denoted by ∅, such that
whatever object 𝑥 we consider, 𝑥 is not an element of ∅. We call ∅ the
empty set, and the definition above can be written as ∀𝑥, 𝑥 ∉ ∅.

Notice that the set ∅ has no element, but the set {∅} has exactly one
element, namely ∅ (so a set can also be an element: it suffices to be an
object to be an element, and the word element sometimes implies the
memebership to a set).

Definition 2.1.3 (Inclusion and subset) Let 𝐹 and 𝐸 be two sets. We say
that 𝐹 is included in 𝐸, and denote it by 𝐹 ⊂ 𝐸, if any element of 𝐹 is an
element of 𝐸. The above definition can be written as ∀𝑥 ∈ 𝐹 , 𝑥 ∈ 𝐸 and in
this case, we say that 𝐹 is a subset of 𝐸.
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Remark 2.1.1 (Axiom of specification) Most of what we do from this
point on, is to define principles or operations that “creates” a set from
a given set. Among them the most important one is theAxiom of spec-
ification, which, roughly speaking, allows one to choose elements of
a given set satisfying a given property. In this way, we can create a
subset of a set.

For example, given a set 𝐸: “all the students in Zoom” and the prop-
erty (𝑃): “student number ending with number 5”, one can produce
the subset:

{𝑥 student in Zoom ; student number of 𝑥 ends with 5} ⊂ 𝐸

or more generally,
{𝑥 ∈ 𝐸 ; 𝑃(𝑥)} ⊂ 𝐸.

As before, the property (𝑃) has to be well-defined (and not ambiguous).
For example, “runs fast” is not precise enough, but “runs 100m within
10s” is well-defined.

The followings definitions are just remainders.

Definition 2.1.4 (Intersection) Given two sets 𝐴 and 𝐵, we call 𝐴 ∩ 𝐵
their intersection the set:

𝐴 ∩ 𝐵 = {𝑥 ; 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵}.

𝐴 ∩ 𝐵 contains elements that belong to 𝐴 and 𝐵 at the same time.

Verify that𝐴∩𝐵 is a subset of𝐴 and𝐴∩𝐵 is a subset of 𝐵. Also, notice that
𝐴∩ 𝐵 = 𝐵 ∩𝐴; this is called commutativity, but I don’t want to introduce
more terminologies at this point…I just assume that everyone knows it
“subconsciously”.

Definition 2.1.5 (Complement) Given a subset 𝐴 of 𝑈 , we call 𝐴𝑐 the
complement of 𝐴 in 𝑈 :

𝐴𝑐 = 𝑈 − 𝐴 = {𝑥 ∈ 𝑈 ; 𝑥 ∉ 𝐴}.

Usually the set 𝑈 is implicitly given by the context.

The definition also makes sense for any two sets 𝐴 and 𝐵 without neces-
sarily 𝐴 ⊂ 𝐵. In this case, we speak of the relative complement of 𝐴with
respect to 𝐵 and it is often denoted 𝐵 ⧵ 𝐴.

Definition 2.1.6 (Union) Given two sets 𝐴 and 𝐵, we call 𝐴 ∪ 𝐵 their
union the set:

𝐴 ∩ 𝐵 = {𝑥 ; 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵}.

If I were asked to define the complement of a set 𝐴 of 𝑈 without spec-
ifying on the level of elements (which is more natural once you have
gathered some experience on set theory, but perhaps not in the begin-
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3: Recall that, to prove that two state-
ments are equivalence, we should prove
two implications.

4: The answer is not ∅.

ning), I probably want to specify it on the level of set. In other words, I
would probably propose the following definition:

Definition 2.1.7 (Complement bis) Let𝐴 ⊂ 𝑈 . We call 𝐵 the complement
of 𝐴 in 𝑈 if

1. 𝐴 ∪ 𝐵 = 𝑈 ;
2. 𝐴 ∩ 𝐵 = ∅.

We prove that these two definitions are equivalent. It is important to
observe the proof technique: it is ultra-standard in proving that two sets
are equal.3

Proof. To prove that two sets are equal, we prove two inclusions. In our
case, we are given two sets 𝐴 ⊂ 𝑈 , and we need to show that the set 𝑈 −𝐴
defined in the definition 2.1.5 is equal to the set 𝐵 in the definition 2.1.7.

• First, we prove that 𝑈 − 𝐴 ⊂ 𝐵. Since 𝑈 − 𝐴 is defined as {𝑥 ∈ 𝑈 ; 𝑥 ∉ 𝐴},
we need to show that for any element 𝑥 ∈ 𝑈 such that 𝑥 ∉ 𝐴, we have
𝑥 ∈ 𝐵. We proceed by contradiction. Suppose that there is some elements
𝑥 ∈ 𝑈 such that 𝑥 ∉ 𝐴 and 𝑥 ∉ 𝐵. Then 𝑥 ∉ 𝐴 ∪ 𝐵, but since 𝐴 ∪ 𝐵 = 𝑈
by assumption in the definition 2.1.7, it follows that 𝑥 ∉ 𝑈 . This is a
contradiction and we have proven that 𝑈 − 𝐴 ⊂ 𝐵.
• Now we prove that 𝐵 ⊂ 𝑈 − 𝐴. We need to show that for any element
𝑏 ∈ 𝐵, we have 𝑏 ∈ 𝑈 − 𝐴. By definition of the set 𝑈 − 𝐴, we need to
show that 𝑏 ∈ 𝑈 and 𝑏 ∉ 𝐴. The fact that 𝑏 ∈ 𝑈 follows from 𝑏 ∈ 𝐵 and
𝐵 ⊂ 𝑈 (since 𝐴 ∪ 𝐵 = 𝑈 ). To see that 𝑏 ∉ 𝐴, we again can proceed by
contradiction: if 𝑏 ∈ 𝐴, then 𝑏 ∈ 𝐴 ∩ 𝐵, but 𝐴 ∩ 𝐵 = ∅ by assumption, and
this is impossible. We have proven that 𝐵 ⊂ 𝑈 − 𝐴.

•We have proven that 𝑈 −𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝑈 −𝐴: this implies that 𝐵 = 𝑈 −𝐴,
and that the definition 2.1.5 and the definition 2.1.7 are equivalent.

Definition 2.1.8 (Power set) Given a set 𝐴, we call 𝒫 (𝐴) the power set
of 𝐴 the set of all subsets of 𝐴:

𝒫 (𝐴) = {𝐵 ; 𝐵 ⊂ 𝐴}.

Notice that its elements are subsets (and not elements) of 𝐴!

Quick question: what is 𝒫 (∅)?4

Wefinish this sectionwith some identities on operations on sets.

Proposition 2.1.1 (Distibutivity) For all sets 𝐴, 𝐵, 𝐶 , we have

𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)

and
𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶).
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5: It means that your teacher is tired of
typing and/or is having a sore back, which
is bad.

6: René Descartes, one of the founders of
modern philosophy.

Axiom 2.2.1 (Descartes) I think.

Corollary 2.2.2 (Descartes) I am.

Proposition 2.1.2 (De Morgan’s laws) Let 𝐴, 𝐵 be subsets of 𝑈 . Then

(𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐 ; (𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐 .

The proofs of these propositions are left as exercises!5

2.2 Cardinal

The cardinal of a set 𝐴 is the number of its elements. It is denoted by |𝐴|
or Card(𝐴), and can be finite or infinite.

Example 2.2.1 The cardinal of ℤ, denoted |ℤ|, is infinite.

Here are some examples of cardinals.

Example 2.2.2 The cardinal of ∅ is 0, while the cardinal of {∅} is 1.

Example 2.2.3 The cardinal of the set of prime numbers is infinity.a

a This is known as Euclid’s theorem.

Example 2.2.4 The cardinal of {𝑥 ∈ ℂ ; 𝑥2 = −1} is 2.

Let 𝐴, 𝐵 be two sets. We also define the Cartesian6 product 𝐴 × 𝐵 in the
following way:

𝐴 × 𝐵 = {(𝑎, 𝑏); 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.

Proposition 2.2.3 Let 𝐴, 𝐵 be two finite sets. The cardinal of 𝐴 × 𝐵 is
|𝐴| × |𝐵|.

The proof of this proposition, as well as that of the following proposition,
are not object of this course, or at least not at this stage.

Proposition 2.2.4 Let 𝐴 be a finite set. The cardinal of 𝒫 (𝐴) is 2|𝐴|.a
a The idea of the proof is the following. If 𝐴 is empty set, then the cardinal of 𝒫 (∅)
is 1 = 20. Otherwise, for any element 𝑎 of 𝐴 and any subset 𝐵 of 𝐴, there are two
possibilities, i.e. we can make one of the following choices: 𝑎 ∈ 𝐵 or 𝑎 ∉ 𝐵. For every
element we have two choices, and together this yields 2𝑛 possibilities for a subset 𝐵 of
𝐴. This is an example of a bad proof at this stage, since to properly write it, we need
the notion of a bijection between sets, which is defined later in this course.

2.3 Story time: Russell’s paradox

The naïve set theory, as opposed to the axiomatic set theory that we tried
to introduce above, leads to many famous paradoxes.

https://brilliant.org/wiki/infinitely-many-primes/
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7: The “C” stands for “choice” or “axiom
of choice”. It is a famous axiom which has
many consequences: people use it inmath-
ematics all the timewithout even realizing
it. One of the easy understanding version
is probably “TheAxiom of Choice is neces-
sary to select a set from an infinite number
of pairs of socks, but not an infinite num-
ber of pairs of shoes.” by Bertrand Russell.

8: One of them is the “continuum hypoth-
esis”, which says that “There is no set
whose cardinality is strictly between that
of the integers and the real numbers.”

Suppose that we don’t have the axioms above and we define the set the-
ory in the loosest way possible. Then one can think about the following
question:

Question 2.1 (Russell’s paradox) Does the set 𝐸 = {𝑥; 𝑥 ∉ 𝑥} exist?
This question is related to the so-called liar’s paradoxe: if someone says
“I am a liar”, is this person lying? Anyways, 𝐸 cannot be well-defined,
since you can ask the question: do we have 𝐸 ∉ 𝐸? If 𝐸 ∉ 𝐸, then by defi-
nition 𝐸 satisfies the property defining elements of 𝐸, so 𝐸 is an element
of 𝐸 and 𝐸 ∈ 𝐸. If 𝐸 ∈ 𝐸, then by definition of 𝐸, 𝐸 ∉ 𝐸. Oopsi.

Paradoxes of this type, discovered around 1900, provoked a serious crisis
in set theory. One of the efforts in trying to construct a set theory free of
paradoxes is called the Zermelo–Fraenkel set theory or ZFC.7 However,
Gödel’s second incompleteness theorem shows that one cannot verify
the consistency of ZFC within ZFC itself, and they are explicit examples
of statement independent of ZFC (meaning they can neither be proven
true or false by ZFC).8

For a more elaborated logic paradox of the same flavor, check out the
poem on the door of Åsa Hirvonen (last retrieved: August 2020).

2.4 Exercises

Exercise 2.1 Define the symmetric difference of two sets 𝐴 and 𝐵 as:

𝐴 △ 𝐵 = (𝐴 ⧵ 𝐵) ∪ (𝐵 ⧵ 𝐴).

1. Calculate
{1, 2, 3} △ {3, 4}.

2. Prove that
𝐴 △ 𝐵 = (𝐴 ∪ 𝐵) ⧵ (𝐴 ∩ 𝐵).

3. Sometimes we call the symmetric difference the disjunctive union.
Do you have an explanation?

Exercise 2.2 The following questions are related.

1. Write down all subsets of the set

{1, 2, 3}.

How many subsets do you get?
2. Prove the formula:

23 = (30) + (31) + (32) + (33) .

Can you generalize the last result?

Exercise 2.3 Determine the cardinal of the following sets:

𝑆1 = ∅, 𝑆2 = {𝑆1, {𝑆1}}, 𝑆3 = {𝑆2, {𝑆2}}, …

https://en.wikipedia.org/wiki/Zermelo–Fraenkel_set_theory
https://mathworld.wolfram.com/GoedelsSecondIncompletenessTheorem.html
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9: This is an easy exercise, but the natu-
ral numbers are defined in some system
as the sets 𝑆1, 𝑆2, 𝑆3 etc.

You can start by writing down explicit the first cases, e.g. 𝑆2 = {∅, {∅}},
make a conjecture, and write a formal proof using mathematical induc-
tion.9

Exercise 2.4 (∗) Let 𝐸 be a finite set with 𝑛 elements. Consider the set

ℰ = {𝐴, 𝐵 ∈ 𝒫 (𝐸); 𝐴 ∪ 𝐵 = 𝐸} .

What is the cardinal of ℰ?

https://en.wikipedia.org/wiki/Set-theoretic_definition_of_natural_numbers


1: I will not define what is a binary rela-
tion properly: but it is a relation between
two elements as the name suggests.

2: There is also a notion of partial order,
when the connexity property is replaced
by the reflexive property that 𝑎 ≤ 𝑎. For
example, on the set of positive integers
ℤ>0, the relation

| “is divisible by”

is only a partial order.

3: Not to be confused with well-ordered,
which assumes the existence of a mini-
mum for all non-empty subsets.

Infimum and supremum 3
“In mathematics, a small positive infinitesimal quantity, usually denoted
𝜖, whose limit is usually taken as 𝜖 → 0.”

– Wolfram MathWorld.

All symbols are created equal, but some symbols are more equal than
others. You can write 𝑦 = 𝑓 (𝑥) or 𝑏 = 𝑓 (𝑎) or 𝑣 = 𝑓 (𝑢) or 𝑠 = 𝑓 (𝑡), but
at least in this course, we reserve the notation 𝜖 (and later 𝛿) for special
purposes.

3.1 Ordering

To define the infimum and supremum of a set, we first need to define a
notion of “bigger” and “smaller”. This is done by prescribing an order on
a set 𝐸.

Example 3.1.1 (Ordering of ℝ) The set of real numbers ℝ is equipped
with a natural total order:

≤ less or equal to

which compares two elements 𝑥, 𝑦 of ℝ. For example,

3 ≤ 3 < 𝜋 ≤ 4,

where the symbol < means “strictly less than” or “less than and not
equal to”.

In general, we call a binary relation1 ≤ a total order on a set 𝐸 if the
following properties hold for all elements 𝑎, 𝑏, 𝑐 ∈ 𝐸:

1. Antisymmetry: if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎, then 𝑎 = 𝑏;
2. Transitivity: if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐, then 𝑎 ≤ 𝑐;
3. Connexity: either 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎.

On a set equipped with a total order, we can compare elements and start
talking about the notions of minimum, maximum, infimum or supre-
mum.2

3.2 Minimum and maximum

Consider the set 𝐸 = {3, 4, 𝜋} ⊂ ℝ. Since ℝ is totally ordered3, the elements
of 𝐸 can be rearranged in increasing order 3 < 𝜋 < 4 and it is natural to
say that 3 is the smallest element and 4 is the largest element of 𝐸. A
rigorous definition is the following:

https://mathworld.wolfram.com/Epsilon.html
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4: Why? If say we have two candidates 𝑏
and 𝑏′ for the maximum of a non-empty
set 𝐸, then 1) 𝑏 ∈ 𝐸 and 𝑏′ is greater or
equal to all elements of 𝐸, so in particular
𝑏 ≤ 𝑏′ 2) 𝑏′ ∈ 𝐸 and 𝑏 is greater or equal
to all elements of 𝐸, so 𝑏′ ≤ 𝑏. Then 𝑏 ≤ 𝑏′
and 𝑏′ ≤ 𝑏, and we have 𝑏 = 𝑏′.

Definition 3.2.1 Let (𝐸, ≤) be a totally ordered set.

We say that an element 𝑎 is the minimum of 𝐸 if

1. 𝑎 is an element of 𝐸, i.e. 𝑎 ∈ 𝐸;
2. 𝑎 is smaller than all other elements of 𝐸, i.e. ∀𝑥 ∈ 𝐸, 𝑎 ≤ 𝑥 .

We say that an element 𝑏 is the maximum of 𝐸 if

1. 𝑏 is an element of 𝐸, i.e. 𝑏 ∈ 𝐸;
2. 𝑏 is greater than all other elements of 𝐸, i.e. ∀𝑥 ∈ 𝐸, 𝑥 ≤ 𝑏.

We denote respectively the minimum and the maximum of 𝐸 by min(𝐸)
and max(𝐸), when they exist.

It is a consequence of the antisymmetry property of the order ≤ that the
minimum (or maximum), if it exists, is unique.4 This is why we usually
say “the minimum” or “the maximum”.

It is important to remember that the minimum or maximum of a set 𝐸
must be an element of the set 𝐸 itself.

Example 3.2.1 Some examples of minimum and maximum:

1. The set ℤ>0 of strictly positive integers has a minimum (namely
1 ∈ ℤ>0) but no maximum.

2. The set (0, 1] = {𝑥 ∈ ℝ; 0 < 𝑥 ≤ 1} has no minimum (notice that
0 ≠ (0, 1]) and is of maximum 1.

In the last example, we are tempted to say that 0 is still, in some sense,
the “lower limit” of the set (0, 1]. To rigorously formulate this intuition,
we introduce the notions of infimum and supremum.

3.3 Infimum and supremum

Let 𝐸 be a subset ofℝ. Wewant to get rid of the restriction thatmin(𝐸) ∈ 𝐸
and extend the notion of minimum to something outside of the set 𝐸. For
this, we first have to define a notion of comparing an arbitrary element
of ℝ to a set.

Definition 3.3.1 (Lower bound and upper bound) Let 𝐸 ⊂ ℝ and 𝑥, 𝑦 ∈
ℝ.
We say that 𝑥 is a lower bound of 𝐸 if for all elements 𝑒 ∈ 𝐸, 𝑥 ≤ 𝑒.
We say that 𝑦 is an upper bound of 𝐸 if for all elements 𝑒 ∈ 𝐸, 𝑒 ≤ 𝑦.

Graphically, with the classical real line representation ofℝ, a lower bound
of 𝐸 is any real number “to the left” of the set 𝐸 and an upper bound of 𝐸
is any real number “to the right” of the set 𝐸.

Example 3.3.1 Some examples of lower bounds and upper bounds:

1. The set ℤ>0 has no upper bound in ℝ. Any real number 𝑥 ≤ 0 is
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5: Do you have an example?

a lower bound of ℤ>0.
2. The set (0, 1] = {𝑥 ∈ ℝ; 0 < 𝑥 ≤ 1} is upper bounded and lower

bounded in ℝ. For instance, any real number 𝑥 ≤ 0 is a lower
bound for (0, 1].

Notice that for a given set 𝐸, different lower bounds or upper bounds
might exist (in general they are never unique), so we usually say “a low-
er/upper bound” or “lower/upper bounds”.

We are still tempted to say that for the set (0, 1] = {𝑥 ∈ ℝ; 0 < 𝑥 ≤ 1}, the
real number 0 playes a special role in the set of its lower bounds. In natu-
ral language, onemight characterize it by saying that it is the “best” lower
bound, or “rightest” lower bound, ormore preciselymaybe “largest/great-
est” lower bound. In a mathematical way and using the definitions we
have already seen, we might propose the following definition:

Definition 3.3.2 (Infimum) Let 𝐸 ⊂ ℝ such that 𝐸 is lower bounded. In
other words, the set of lower bounds of 𝐸 is non-empty, or that there exists
a real number 𝑥 ∈ ℝ such that 𝑥 is a lower bound of 𝐸.
We say that 𝑎 ∈ ℝ is the infimum of 𝐸 if 𝑎 is the maximum of the set of
lower bounds of 𝐸.a We denote the infimum of 𝐸 by inf(𝐸) when it exists
in ℝ.
a This is admittedly a complicated phrase to assimilate at first sight.

This is a sophisticated definition, so let usmake it simpler.Wewrite down
the definition of supremum to change a little: you should be able to work
out the definition for the infimum on your own.

Definition 3.3.3 (Supremum) Let 𝐸 ⊂ ℝ. We say that 𝑏 ∈ ℝ is the supre-
mum of 𝐸 if

1. 𝑏 is a upper bound of 𝐸: for all 𝑒 ∈ 𝐸, 𝑒 ≤ 𝑏;
2. 𝑏 is the smallest upper bound of 𝐸: for all upper bound 𝑦 of 𝐸, 𝑏 ≤ 𝑦.

We denote by sup(𝐸) the supremum of 𝐸 when it exists in ℝ.

Sometimes, the supremum is referred to as the least upper bound. Notice
that the supremumof a set does not necessarily exist.5 Notice also thatwe
wrote “the supremum” in the above definition, which implicitly implies
that the supremum, when it exists, is unique (of course the same applies
to the infimum).

Lemma 3.3.1 (Uniqueness of the supremum) The supremum sup(𝐸) of
a set 𝐸 ⊂ ℝ, if it exists, is unique.

Proof. Weprove by contradiction. Suppose that 𝐸 has two different suprema
𝑏, 𝑏′ with 𝑏 ≠ 𝑏′. Without loss of generality, suppose that 𝑏 < 𝑏′. Then 𝑏
is an upper bound for the set 𝐸 and 𝑏 is strictly smaller than 𝑏′, this con-
tradicts the property that 𝑏′ is the smallest upper bound of 𝐸 (since we
supposed that 𝑏′ is a supremum of 𝐸). Therefore, 𝐸 can have only one
supremum.
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6: This is a very special property of ℝ
called the Dedekind completeness prop-
erty. It is often taken as an axiom in the
contruction of the real numbers.

7: One could say that we must seize the
idea behind the notations, but half of the
truth is that I am a little lazy.

Try to draw a picture to represent the situation!

Proposition 3.3.2 (Maximum and supremum) If a set 𝐸 ⊂ ℝ has a max-
imal element, then this maximal element is the supremum of 𝐸.

Proof. Suppose that 𝑏 is the maximal element of 𝐸. Then by definition of
the maximum, 𝑏 is an upper bound of 𝐸, since for all elements 𝑒 ∈ 𝐸, 𝑒 ≤ 𝑏.
Furthermore, 𝑏 is the smallest upper bound of 𝐸, for that any upper bound
of 𝐸 must be bigger or equal to all elements of 𝐸, in particular bigger or
equal to 𝑏. We conclude that 𝑏 is indeed the supremum of 𝐸.

Theorem 3.3.3 (On the existence of the supremum) If a set 𝐸 ⊂ ℝ is
upper bounded in ℝ, then the supremum of 𝐸 exists in ℝ.

This theorem is admitted in this course.6

Figure 3.1: Upper bounds and supremum
of a real set 𝐴.

3.4 An epsilon of room

This is an important moment of your life: you are going to see the use of
𝜖 in mathematical analysis.

For symmetry, let us study the infimum with the 𝜖-language. I also took
the liberty of changing the notations.7

Theorem 3.4.1 (Definition of infimum with 𝜖) Let 𝐴 be a subset of ℝ
such that inf(𝐴) exists. Then 𝑝 = inf(𝐴) if and only if

1. For every 𝑥 ∈ 𝐴, 𝑝 ≤ 𝑥 ;
2. For every 𝜖 > 0, there exists some 𝑥 ∈ 𝐴 with 𝑥 < 𝑝 + 𝜖.

Proof. The first item states that 𝑝 is a lower bound of 𝐴. To see that the
second item is equivalent to the fact that 𝑝 is the greatest lower bound,
we should write two implications. First, if 𝑝 is the greatest lower bound
of 𝐴, then 𝑝 + 𝜖 is not a lower bound of 𝐴 since it is strictly bigger than
𝑝, in such a way that the negation of the definition of a lower bound of
𝐴 yields the existence of an element 𝑥 ∈ 𝐴 with 𝑥 < 𝑝 + 𝜖. For the other
implication, suppose that for every 𝜖 > 0, there exists some 𝑥 ∈ 𝐴 such
that 𝑥 < 𝑝 + 𝜖. It follows that any real number 𝑝′ > 𝑝 cannot be a lower
bound of 𝐴, for that choosing 𝜖 = 𝑝′ − 𝑝 yields the existence of some
𝑥 ∈ 𝐴 such that 𝑥 < 𝑝 + 𝜖 = 𝑝′. So 𝑝 is the largest lower bound, i.e. the
infimum of the set 𝐴.

https://en.wikipedia.org/wiki/Completeness_of_the_real_numbers
https://en.wikipedia.org/wiki/Completeness_of_the_real_numbers
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8: Try to write it out yourself!

9: The assumption 𝑎 < 𝑎′ follows by sym-
metry.

10: This means we can take arbitrary 𝜖 >
0, and corresponds to the “for every 𝜖 > 0”
part of the statement.

The second item essentially expresses the idea that “there should be no
gap between inf(𝐴) and 𝐴”. Again, draw a picture!

Notice also that we can change the strict < inequality in the second item
to a larger ≤ inequality (a quick way to see that is to replace 𝜖 by 2𝜖 in
the theorem).8

Let us see some applications of this 𝜖-formalism.

Lemma 3.4.2 (Uniqueness of the infimum, revisited) Let 𝐸 be a subset
of ℝ. If inf(𝐸) exists in ℝ, then it is unique.

Proof. We proceed by contradiction. Suppose that 𝑎, 𝑎′ ∈ ℝ with 𝑎 < 𝑎′
are both equal to inf(𝐸).9 Consider 𝜖 = 𝑎′−𝑎

2 > 0. Using the 𝜖-definition of
infimum applied to the smaller 𝑎, we know that there exists some element
𝑥 ∈ 𝐸 such that 𝑥 < 𝑎 + 𝜖. The choice of 𝜖 is such that 𝑎 + 𝜖 < 𝑎′, so that
𝑥 < 𝑎 + 𝜖 < 𝑎′. But since 𝑎′ is infimum of 𝐸, in particular 𝑎′ is a lower
bound of 𝐸, and for 𝑥 ∈ 𝐸, we have 𝑎′ ≤ 𝑥 . Thus, 𝑥 < 𝑎′ and 𝑎′ ≤ 𝑥 : this is
a contradiction.

Again, try to draw a picture!

Let us see an example of the above 𝜖-definition in action.

Example 3.4.1 The infimum of the set (0, 1] = {𝑥 ∈ ℝ; 0 < 𝑥 ≤ 1} is 0.

Proof. We verify the two items in the definition of infimum with 𝜖.
• First, for every 𝑥 ∈ (0, 1], we have 0 < 𝑥 by definition of the set (0, 1], so
that 0 ≤ 𝑥 (i.e. 0 is a lower bound of (0, 1]).
• Now let 𝜖 > 0.10 We prove that there exists some 𝑥 ∈ (0, 1], such that
𝑥 < 𝜖. Consider 𝑥 = 𝜖

2 . By definition, 𝑥 > 0 (since 𝜖 > 0) and 𝑥 < 𝜖. This
shows that 0 is the greatest lower bound.

• In conclusion, the infimum of the set (0, 1] exists and is equal to 0.

3.5 Real intervals

In the previous example, (0, 1] is called an interval of ℝ. This interval has
the following properties:

▶ It contains all real numbers between 0 and 1;
▶ It does not contain its “left end point” 0;
▶ It does contain its “right end point” 1;
▶ It has “length” equal to 1;
▶ etc.

In general, we call a real set 𝐼 ⊂ ℝ an interval if the “no hole” prop-
erty above is true. This should be formalized better in the following
way:
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11: In a first approximation, a set is
merely a collection of objects (it is in some
sense the loosest structure one can imag-
ine). What usually makes a set interesting
is the additional structures it possesses:
for example, if we can define a total or-
der on a certain set, than this set becomes
suddenly more interesting in many ways,
since its elements are related if we have
the knowledge of this structure. When
you study linear algebra in the previous
course, a matrix is a collection of coordi-
nates, but for example, you have opera-
tions on the set of matrices, e.g. the multi-
plication of matrices (which can be inter-
preted as composition of linear functions),
which makes this definition way more in-
teresting.

12: The word “deep” is a mathematical
jargon, which means approximately ob-
scure, hard, not elementary, sophisticated,
requires a long chain of non-intuitive log-
ical deductions or things of this sort.

Definition 3.5.1 (Intermediate value property characterization of real
intervals) A real interval is a subset 𝐼 of ℝ such that

∀𝑥, 𝑦 ∈ 𝐼 , ∀𝑧 ∈ ℝ, (𝑥 ≤ 𝑧 ≤ 𝑦) ⇒ (𝑧 ∈ 𝐼 ).

The end points of an interval are somewhat special. There are many ter-
minologies associated to the classification of real intervals and most of
them are directed associated to the properties of the end points (since by
the above, the end points characterized the real interval). Let us enumer-
ate all types of real interval: in the following 𝑎 < 𝑏 are real numbers.

1. Empty interval: ∅;
2. Degenerate interval or singleton: [𝑎, 𝑎] = {𝑎};
3. Bounded, open interval: (𝑎, 𝑏) = {𝑥 ∈ ℝ ; 𝑎 < 𝑥 < 𝑏};
4. Bounded, closed interval: [𝑎, 𝑏] = {𝑥 ∈ ℝ ; 𝑎 ≤ 𝑥 ≤ 𝑏};
5. Bounded, left-closed, right-open: [𝑎, 𝑏) = {𝑥 ∈ ℝ ; 𝑎 ≤ 𝑥 < 𝑏};
6. Bounded, left-open, right-closed: (𝑎, 𝑏] = {𝑥 ∈ ℝ ; 𝑎 < 𝑥 ≤ 𝑏};
7. Unbounded, left-open interval: (𝑎, ∞) = {𝑥 ∈ ℝ ; 𝑎 < 𝑥};
8. Unbounded, left-closed interval: [𝑎, ∞) = {𝑥 ∈ ℝ ; 𝑎 ≤ 𝑥};
9. Unbounded, right-open interval: (−∞, 𝑏) = {𝑥 ∈ ℝ ; 𝑥 < 𝑏};

10. Unbounded, right-closed interval: (−∞, 𝑏] = {𝑥 ∈ ℝ ; 𝑥 ≤ 𝑏};
11. Unbounded at both ends: (−∞,∞) = ℝ.

3.6 Development: Archimedean property of the
set of real numbers

Weare quite familiar with real numbers. However, the set of real numbers
has many interesting structures, which we are quite used to and taken
for granted without furthur examination.11

One of the many features of real numbers that we take for granted is
the Archimedean property. For example, we seldom doubt the validity
of the following statement:

Proposition 3.6.1 The set ℤ≥0 has no upper bound in ℝ. In other words,
this set is not upper bounded and there exists arbitrarily large integer.

Or the following one that you might have seen already:

Definition 3.6.1 (Integer part of a real number) For every real number
𝑥 ∈ ℝ, we can define its integer part, denoted ⌊𝑥⌋, as the unique integer
𝑘 such that 𝑘 ≤ 𝑥 < 𝑘 + 1.

However, although the above statements look innocently evident, it is
hard (and I would say impossible for us) to prove! Indeed, what we are
asking is a very deep property on the construction of the real numbers,
otherwise put, to prove these statements require to ponder upon the ques-
tion of “what are real numbers, really”?12
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13: As a good habit: always check if a set
is empty. The statement “for all 𝑥 ∈ ∅, 𝑃”
is always true whatever the statement 𝑃
is.

14: You can use an exercise from past
weeks…!

15: It means that 𝐴 = { 12 ,
2
3 ,

3
4 , … }.

16: If one wants to be very rigorous, one
can write 𝑎𝜖 or 𝑎(𝜖) instead. The statement
“∀𝜖, ∃𝑎, … ” (implicitly) implies that 𝑎 de-
pends on 𝜖.

It is a weird feature of this course (and of mathematics as you will see),
that a simple question might require a response longer than what a two-
month course can cover. So let us just mention the following axiom for
ℝ (together with its absolute value | ⋅ |):

Axiom 3.6.2 For every non-zero real number 𝑥 ∈ ℝ, there exists an inte-
ger 𝑛 > 0 such that

|𝑥 + ⋯ + 𝑥| > 1
where there are 𝑛 terms of 𝑥 in the summation.

For example, from this axiom, for arbitrary integer𝑚 > 0, we can consider
the real number 1

𝑚 > 0. Applying the above axiom to 𝑥 = 1
𝑚 , we obtain

an integer 𝑛 > 0 such that 𝑛 × 1
𝑚 > 1: that is, 𝑛 > 𝑚.

3.7 Exercises

Exercise 3.1 True or false:13

1. For a finite, non-empty set 𝐴, sup(𝐴) = max(𝐴).
2. For any set 𝐴, sup(𝐴) = − inf(𝐴).
3. For any non-empty set 𝐴, inf(𝐴) ≤ sup(𝐴).

Exercise 3.2 Determine the following quantities:

1.
inf {𝑥 ∈ ℝ ; 𝑥2 > 2} .

2. For −1 < 𝑞 < 1,
sup {

𝑛
∑
𝑘=0

𝑞𝑘 ; 𝑛 ∈ ℤ≥0} .

Be careful that 𝑞 can be negative in this question.14

3.
inf {𝑥2 − 3𝑥 + 2 ; −1 < 𝑥 ≤ 2} .

Exercise 3.3 Let 𝐴 = ([0, 𝜋) ∩ [2, 4]) ∪ (√2, √10).
1. Determine inf(𝐴) and sup(𝐴).
2. Is 𝐴 an interval of ℝ?

Exercise 3.4 Reproof all the results in this chapter using the 𝜖 formalism.

Exercise 3.5 (Homework) Let 𝐴 = { 𝑛
𝑛+1 }𝑛∈ℤ≥1

.15

1. Find the infimum and the supremum of 𝐴.
2. Let 𝜖 > 0. Pick an element 𝑎 of 𝐴 such that sup(𝐴) − 𝜖 ≤ 𝑎.

Notice that the element 𝑎 depends on the choice of 𝜖.16

Exercise 3.6 Define the function ln+ on ℝ>0 as

∀𝑥 > 0, ln+(𝑥) = max(ln(𝑥), 0).
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Show that for 𝑥, 𝑦 > 0,

ln+(𝑥) + ln+(𝑦) ≥ ln+(𝑥𝑦).

Exercise 3.7 Let 𝑎, 𝑏 > 0 and 0 < 𝑝 < 1. Show that:

1. By comparing 𝑎 with 𝑏,

inf(𝑎𝑝𝑏1−𝑝 , 𝑎1−𝑝𝑏𝑝) ≥ inf(𝑎, 𝑏).

2. Simplified Muirhead inequality or Hardy-Littlewood inequality:

𝑎 + 𝑏 ≥ 𝑎𝑝𝑏1−𝑝 + 𝑎1−𝑝𝑏𝑝 .

Exercise 3.8 (∗) Let 𝐴, 𝐵 be subsets of ℝ. Suppose that sup(𝐴) = 𝑀𝐴 ∈ ℝ
and sup(𝐵) = 𝑀𝐵 ∈ ℝ.

1. What can we say about sup(𝐴 + 𝐵)?
2. What can we say about sup(𝐴 − 𝐵)?
3. What can we say about sup(𝐴 − 𝐴)?

Here, 𝐴 + 𝐵 (resp. 𝐴 − 𝐵) are subsets of ℝ defined as

𝐴 + 𝐵 = {𝑎 + 𝑏; 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵},

and respectively
𝐴 − 𝐵 = {𝑎 − 𝑏; 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.
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1: Suppose that we have an expression in
the form 𝑦 = 𝑓 (𝑥): 𝑋 is then the set of
values of 𝑥 , 𝑌 the set of possible values of
𝑦 (it does not mean that all elements of 𝑌
is attained), and the relation is recorded in
the expression of 𝑓 .
2: Sometimes this just means “The author
is tired.”

Functions: definitions and
properties 4

In high school, most functions are given in the form of a formula:

𝑦 = 𝑓 (𝑥) = 𝑥2 + 1.

However, in full generality, a function is defined in a more abstract way.
The essential idea is the association of an element to a given element (in
the example above, for each real number 𝑥 , we associate the real number
𝑦 = 𝑥2 + 1). The abstract definition has many advantages and covers
more situations, for example, we will see that a sequence can be seen as
a function (from a set of integers ℤ𝑛≥0 to the set of real numbers ℝ).

4.1 Notations

Formally speaking, a function is defined with three parts:1

1. A set 𝑋 called the domain of the function;
2. A set 𝑌 called the codomain of the function;
3. A relation that associates each element 𝑋 to a single element of 𝑌 .

Sometimes, by abuse of notation,2 we are less precise on the domain and
the codomain in the definition of a function (e.g. we supposed implicitly
that the function is defined where it can be defined, or that the domain
of the function follows from the context). But keep in mind that two
functions can be different even if they share the same expression, e.g. in
the case where their domains and/or codomains differ.

Here is an example of a (very useful) function defined in an abstract
way.

Example 4.1.1 The Möbius function 𝜇 ∶ ℤ>0 → {−1, 0, 1} is defined
depending on the factorization of a positive integer into prime factors.
For any positive integer 𝑛 > 0, the value of 𝜇(𝑛) is defined in the fol-
lowing way:

1. 𝜇(𝑛) = 1 if 𝑛 is a square-free positive integer with an even num-
ber of prime factors;

2. 𝜇(𝑛) = −1 if 𝑛 is a square-free positive integer with an odd num-
ber of prime factors;

3. 𝜇(𝑛) = 0 if 𝑛 has a squared prime factor.

The Möbius function 𝜇 has an alternative definition in terms of roots
of unity (if you are interested, take a look at the extra exercise ??.)a

a Using the Möbius function 𝜇, one defines the Mertens function 𝑀 ∶ ℝ → ℝ, 𝑀(𝑥) =
∑

𝑛∈ℤ>0 ,𝑛≤𝑥
𝜇(𝑛). It is currently unknown whether 𝑀(𝑥) = 𝑂 (𝑥

1
2 +𝜖) for all 𝜖 > 0. I will

restrain myself from putting this as an extra exercise.
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Figure 4.1: First values of theMöbius func-
tion 𝜇.

3: Also, sometimes we speak of applica-
tions or maps instead of functions.

4: Sometimes onemight encounter the so-
called multivariate functions, but we do
not use this notion in this course.

5: The inverse function of 𝑓 is not 1
𝑓 , al-

though the notations for the inverse func-
tion 𝑓 −1 and for the negative power 𝑓 −1
can be sources of confusion: one should
distinguish them carefully depending on
the context. The function 𝑔 = 1

𝑓 , when it

is defined, is more commonly called the
reciprocal of 𝑓 . If we really want to make
the distinction, we can write (𝑓 (𝑥))−1 for
1

𝑓 (𝑥) .

6: For example, one could try “an in-
jection seperates the elements”, or “if 𝑓
merges two different elements into one
then 𝑓 is not injective”, propose and dis-
cuss with your peers to find the subtleties!

7: What if we change the definition to
∃𝑥 ∈ 𝑋 , ∀𝑦 ∈ 𝑌 , 𝑓 (𝑥) = 𝑦, what does it tell
you? Be careful about interchanging the
positions of the quantifiers!

Different authors use diffrent words for the sets 𝑋 and 𝑌 : I will not make
a list here since in most cases they should be quite clear from the context.
In this course, we write 𝑓 ∶ 𝑋 → 𝑌 for a function between two sets 𝑋
and 𝑌 , and 𝑓 ∶ 𝑥 ↦ 𝑦 or 𝑓 (𝑥) = 𝑦 the association relation between
elements of 𝑋 and 𝑌 .3

It is important to remember that, unless otherwise specifies, for any el-
ement of the set of departure 𝑋 , one and only one element of the set of
destination 𝑌 is associated.4

4.2 Injections, surjections, bijections

An important class of functions is the class of bijective functions: for a
bijective function, we can define its inverse.5

Example 4.2.1 The inverse function of the exponential function exp ∶
ℝ → ℝ>0 is the logarithm ln ∶ ℝ>0 → ℝ.

To explain what is a bijection (i.e. bijective function), we first explain
what is a injection (resp. surjection).

Definition 4.2.1 (Injection) Let 𝑓 ∶ 𝑋 → 𝑌 be a function. We call 𝑓 an
injection if

∀𝑥, 𝑥′ ∈ 𝑋 , (𝑥 ≠ 𝑥′) ⇒ (𝑓 (𝑥) ≠ 𝑓 (𝑥′)).

This reads, for different 𝑥, 𝑥′ in 𝑋 , their images 𝑓 (𝑥), 𝑓 (𝑥′) by an injective
function 𝑓 are different.

It is up to you to find your own formulation of this definition.6

Definition 4.2.2 (Surjection) Let 𝑓 ∶ 𝑋 → 𝑌 be a function. We call 𝑓
an surjection if

∀𝑦 ∈ 𝑌 , ∃𝑥 ∈ 𝑋 , 𝑓 (𝑥) = 𝑦.
This reads, for any 𝑦 in 𝑌 , there exists some 𝑥 in 𝑋 such that 𝑦 is the
image of 𝑥 by the function 𝑓 .

Again, try to find your own formulation of this definition!7

Definition 4.2.3 (Bijection) A function 𝑓 ∶ 𝑋 → 𝑌 is a bijection if and
only if it is an injection and a surjection.
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11: Sometimes, the range of a function
can refer to the codomain of the function:
it depends on the author and the context.
To avoid this possible confusion, we can
write 𝑓 (𝑋) for the range of 𝑓 ∶ 𝑋 → 𝑌 .

In some sense, a bijection associates an element of 𝑋 to an element of 𝑌
in a unique way. Another way of formulating the above definitions is via
the notion of preimage (or sometimes inverse image).

Definition 4.2.4 (Preimage) Let 𝑓 ∶ 𝑋 → 𝑌 be a function and let 𝐵 be
a subset of 𝑌 . We define the preimage of 𝐵 by 𝑓 , denotes as 𝑓 −1(𝐵), as
the following subset of 𝑋 :

𝑓 −1(𝐵) = {𝑥 ∈ 𝑋 ; 𝑓 (𝑥) ∈ 𝐵}.

In particular, if 𝐵 is a singleton, i.e. 𝐵 = {𝑦} with 𝑦 ∈ 𝑌 , we can speak
of the preimage of the element 𝑦 as the subset 𝑓 −1({𝑦}) of 𝑋 . Notice that
this set is not necessarily a singleton (it might be any subset of 𝑋 from
the empty set ∅ to the whole set 𝑋 ).

The notation 𝑓 −1(𝐵) does not in general refer to the inverse function,
since we do not suppose anything on the function 𝑓 : in particular the
notion of preimage is always well-defined even for non-bijective func-
tions.

Now one can reformulate the above definitions about injective/surjec-
tive/bijective functions:

Definition 4.2.5 (Preimage and injection/sujection/bijection) Let 𝑓 ∶
𝑋 → 𝑌 be a function.

▶ The function 𝑓 is injective if for any singleton {𝑦} ⊂ 𝑌 , the preimage
𝑓 −1({𝑦}) has at most one element.8

8: An injective function is called a one-to-
one function.▶ The function 𝑓 is surjective if for any singleton {𝑦} ⊂ 𝑌 , the preim-

age 𝑓 −1({𝑦}) has at least one element.9
9: A surjective function is called an onto
function.▶ The function 𝑓 is bijective if for any singleton {𝑦} ⊂ 𝑌 , the preimage

𝑓 −1({𝑦}) has exactly one element.10
10: We speak of one-to-one correspon-
dence in this case. Personally I don’t
like these terminologies, sometimes they
cause confusions for me.

To finish this section, we define the image of a function. Although it
might sound weird for many as this moment, you will see that in practise,
the notion of the preimage is more convenient to use compared to the
notion of the image.

Definition 4.2.6 (Image of a function) Let 𝑓 ∶ 𝑋 → 𝑌 be a function
and 𝐴 ⊂ 𝑋 a subset of 𝑋 . The image of the set 𝐴 by the function 𝑓 is
defined as the following subset of 𝑌 , denoted 𝑓 (𝐴):

𝑓 (𝐴) = {𝑦 ∈ 𝐵 ; ∃𝑥 ∈ 𝐴, 𝑦 = 𝑓 (𝑥)}.

If 𝑓 ∶ 𝑋 → 𝑌 is a function, then the image of the whole set 𝑋 , as a subset
𝑓 (𝑋) of 𝑌 , is called the range of the function 𝑓 .11

4.3 Composition and inverse

Let us define the composition of functions properly.
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Definition 4.3.1 (Composition of functions) Let 𝑋 , 𝑌 and 𝑍 be three
sets and let 𝑓 ∶ 𝑋 → 𝑌 , 𝐺 ∶ 𝑌 → 𝑍 be two functions. We define the
composition of 𝑓 and 𝑔 to be the function, denoted by 𝑔∘𝑓 , in the following
way:1212: Notice the order in the notation!

∀𝑥 ∈ 𝑋 , (𝑔 ∘ 𝑓 )(𝑥) = 𝑔(𝑓 (𝑥)) ∈ 𝑍 .
It follows that 𝑔 ∘ 𝑓 is a function from the set 𝑋 to the set 𝑍 .

It is important to verify before using the notation 𝑔 ∘ 𝑓 that it is indeed
well-defined (in particular, the function 𝑔 should be at least defined on
the range of the function 𝑓 ).
Similarly to what you have already seen in the linear algebra course, the
inverse of a function is defined in the following way:

Definition 4.3.2 (Inverse of a function) Let 𝑓 ∶ 𝐴 → 𝐵 be a bijective
function. A function 𝑔 ∶ 𝐵 → 𝐴 is called the inverse of the function 𝑓 if
and only if 𝑓 ∘ 𝑔 = Id and 𝑔 ∘ 𝑓 = Id.

Let us make a list of remarks here.

1. The identity function Id is such that Id(𝑥) = 𝑥 for all 𝑥 ; it has the
property that for any function 𝑓 , 𝑓 ∘ Id = Id ∘ 𝑓 = 𝑓 (when the
domain and codomain are suitably chosen).

2. The fact that 𝑓 ∘𝑔 and 𝑔 ∘𝑓 are well-defined gives some information.
For example, it shows that the range of 𝑓 should be contained in
the domain of 𝑔 (and the range of 𝑔 should be contained in the
domain of 𝑓 ).

3. If we require further, for example that 𝑔∘𝑓 = Id, thenmore informa-
tion can be deduced. This means that for all 𝑥 ∈ 𝐴 (why it is not 𝐵
here?), we have 𝑔(𝑓 (𝑥)) = 𝑥 . It shows that the range of 𝑔 is at least
𝐴: for each 𝑥 ∈ 𝐴, if we take 𝑡 = 𝑓 (𝑥) then 𝑔(𝑡) = 𝑥 . This shows the
surjectivity of 𝑔 if we require 𝑔 ∶ 𝐵 → 𝐴. What is perhaps a little
bit less trivial is that 𝑓 is then injective, since for different 𝑥 ≠ 𝑦 in
𝐴, if 𝑓 (𝑥) = 𝑓 (𝑦) then 𝑔(𝑓 (𝑥)) = 𝑔(𝑓 (𝑦)), but means that 𝑥 = 𝑦 and
is impossible.

4. If we incorporate the other equation 𝑓 (𝑔(𝑥)) = 𝑥 , then we see that
imposing these two requirements actually implies the bijectivity of
𝑓 (and that of 𝑔)!

A final remark on an important concept (unfortunately, we don’t have
time to develop much here in this course) called the restriction of a func-
tion.

Definition 4.3.3 (Restriction) Let 𝑓 ∶ 𝑆 → ℝ be a function and let 𝑅 a
subset of 𝑆. The restriction of 𝑓 to 𝑅, denoted 𝑓 |𝑅 , is the function defined
on 𝑅 such thata

∀𝑥 ∈ 𝑅; 𝑓 |𝑅(𝑥) = 𝑓 (𝑥).
a Or sometimes denoted ̃𝑓 , or even just 𝑓 when the author is lazy: of course this goes
against the principle of our course, but it is commonly accepted if you declare “by
abuse of notation” aforehand.
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13: A mathematician would say “fine”
properties.

14: Well, for example, in this corona time,
it is important to know if the situation is
getting better or worse…

In a similar fashion, one can restrict the domain instead of the codomain,
as long as the function is still well-defined! This can be useful for turning
an injective function into a bijective function.

4.4 Real functions and monotonicity

In this course, we will be mainly interested in functions defined on a
subset 𝑆 of ℝ and with values in ℝ: they will be called real functions.

Example 4.4.1 The (natural) logarithm function ln is a real function.
Its domain of definition is ℝ>0.a
a There are some differences between the notations log and ln. If you are interested, see
here.

Figure 4.2: The graph of the natural loga-
rithm function.

For a real function, we can draw its graph. More precisely,

Definition 4.4.1 The graph of a real function 𝑓 ∶ 𝑆 → ℝ is the set of
points (𝑥, 𝑓 (𝑥)) in the plane ℝ × ℝ. In other words, a point (𝑥, 𝑦) ∈ ℝ2 is
in the graph of 𝑓 if and only if 𝑦 = 𝑓 (𝑥).

Some properties on the function can be checked from its graph. For ex-
ample:

1. A function 𝑓 is well-defined at 𝑥 if the vertical line crossing the
point (𝑥, 0) intersects the graph of 𝑓 at one and only one point;

2. A function 𝑓 is injective, if for every 𝑦, the horizontal line crossing
the point (0, 𝑦) intersects the graph of 𝑓 at at most one point;

3. Monotonicity of a function: see below!

However, for some more complicated properties13, it is hard to see them
on a graph. Sometimes it is even impossible to draw the graph of a given
function!

Sometimes it is important to point out if a function is increasing or de-
creasing.14

https://en.wikipedia.org/wiki/Logarithm
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15: Or some might write w.l.o.g. for
“without loss of generality”, for that if 𝑥 >
𝑦, we can just change 𝑥 into 𝑦 and 𝑦 into
𝑥 .

16: The set ℝ ⧵ {0} is often denoted ℝ∗.

17: Quick remainder: for each element of
𝑋 , they have 2 choices, to be or not to be,
in a subset of 𝑋 .

Definition 4.4.2 A function 𝑓 ∶ 𝑆 → ℝ is called increasing or non-
decreasing, if for all 𝑥, 𝑦 ∈ 𝑆 with 𝑥 ≤ 𝑦, we have 𝑓 (𝑥) ≤ 𝑓 (𝑦). We
say that 𝑓 is strictly increasing if for all 𝑥, 𝑦 ∈ 𝑆 with 𝑥 < 𝑦, we have
𝑓 (𝑥) < 𝑓 (𝑦).
Similarly, a function 𝑓 ∶ 𝑆 → ℝ is called decreasing ornon-increasing,
if for all 𝑥, 𝑦 ∈ 𝑆 with 𝑥 ≤ 𝑦, we have 𝑓 (𝑥) ≥ 𝑓 (𝑦). We say that 𝑓 is
strictly decreasing if for all 𝑥, 𝑦 ∈ 𝑆 with 𝑥 < 𝑦, we have 𝑓 (𝑥) > 𝑓 (𝑦).

It is a good habit to create some simple exercises to check the definition.
For example, you can test that the identity function 𝑓 (𝑥) = 𝑥 is always
(strictly) increasing, and that if 𝑔 is increasing, then −𝑔 is decreasing.
Everything seems coherent.

Proposition 4.4.1 (Strictly monotonicity implies injectivity) Let 𝑓 ∶
𝑆 → ℝ be a strictly increasing function. Then 𝑓 is injective.

Proof. Let 𝑥 ≠ 𝑦 be in 𝑆. We can assume 𝑥 < 𝑦 by symmetry.15 Then
𝑓 (𝑥) < 𝑓 (𝑦) by strict monotonicity, and in particular 𝑓 (𝑥) ≠ 𝑓 (𝑦): this
shows the injectivity of 𝑓 .

Sometimes, a function can be defined implicitly. For example, the equa-
tion

𝑥𝑦 = 1
defines a real function from ℝ ⧵ {0} to ℝ ⧵ {0} which sends 𝑥 to 𝑦, such
that (𝑥, 𝑦) is a solution to the equation.16 In the above example you can
work out an explicit expression of 𝑦 in the form of 𝑦 = 𝑓 (𝑥), but in more
complicated situations, we will work with the equation instead of the
explicit expression. However, if the equation has several solutions 𝑦 for
the same 𝑥 , one has to specify one of them – otherwise the function is
ill-defined!

4.5 Story time: Cantor’s theorem

We have already seen that for a finite set 𝑋 with 𝑛 elements, the cardinal
of the power set 𝒫 (𝑋), i.e. the set of subsets of 𝑋 , contains exactly 2𝑛
elements.17 It is easy to verify that 𝑛 < 2𝑛 for all 𝑛 ∈ ℤ>0: therefore, for a
finite set 𝑋 , we have

|𝑋 | < |𝒫 (𝑋)|
with a strict inequality.

What is the situation for infinite sets? We first use the following rule for
comparing the cardinals of sets in general:

Definition 4.5.1 (Comparison of cardinals) Let 𝑋 and 𝑌 be two sets. We
write

|𝑋 | ≤ |𝑌 |
if there exists an injection 𝑓 ∶ 𝑋 → 𝑌 .
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18: However it is horrendously difficult
for at this stage for you to prove that
≤ is antisymmetric. Some might call
it the Bendixon-Bernstein-Borel-Cantor-
Dedekind-Schröder-Zermelo theorem.

19: So you might ask, what is this infin-
ity? That’s a good question to ask a logi-
cian of the department!

20: To this day it still amazes me how one
come up with such a beautiful construc-
tion.

Intuitively, this definition says that via the injection 𝑓 , we obtain a copy
of the set 𝑋 in the set 𝑌 , namely 𝑓 (𝑋) ⊂ 𝑌 (since by a theorem before,
𝑓 ∶ 𝑋 → 𝑓 (𝑋) is a bijection if 𝑓 is injective).18 This is coherent with our
intuition on finite sets.

We will prove a theorem of Cantor, that

Theorem 4.5.1 There is no injection from 𝒫 (𝑋) to 𝑋 for any set 𝑋 . (Al-
most) equivalently, there is no surjection from 𝑋 to 𝒫 (𝑋).a
a See an exercise of this section for this equivalence.

A direct but confusing at first sight consequence: there exists different
levels of infinity, and actually infinite19 levels of infinity, since for any
infinite set 𝑋 ,

|𝑋 | < |𝒫 (𝑋)| < |𝒫 (𝒫 (𝑋))| < …

Let us prove this theorem. The way it is formulated suggests a proof by
contradiction.

Proof. Suppose that there is a surjection 𝑓 ∶ 𝑋 → 𝒫 (𝑋). Remember that
𝑓 sends an element of 𝑋 to a subset of 𝑋 . We are going to construct a
subset of 𝑋 which it is impossible to be in the image of 𝑓 .
Consider the subset 𝐸 of 𝑋 defined as20

𝐸 = {𝑥 ∈ 𝑋 ; 𝑥 ∉ 𝑓 (𝑥)}.

Since 𝑓 is a surjection, there exists 𝑥 ∈ 𝑋 such that 𝐸 = 𝑓 (𝑥).
Now the magical question: does 𝑥 belong to 𝐸? If 𝑥 ∈ 𝐸, by definition of
𝐸, 𝑥 ∉ 𝑓 (𝑥) = 𝐸. But if 𝑥 ∉ 𝐸, since 𝐸 = 𝑓 (𝑥), it means that 𝑥 ∉ 𝑓 (𝑥) and
by definition of 𝐸, 𝑥 ∈ 𝐸. So 𝑥 ∈ 𝐸 ⟺ 𝑥 ∉ 𝐸: contradiction.

It is pretty clear that the map 𝑥 ↦ {𝑥} from 𝑋 to 𝒫 (𝑋) is an injection.
So the cardinal of 𝒫 (𝑋) is strictly bigger than the cardinal of 𝑋 .

To finish the story, let us mention some highlights of mathematics:

Question 4.1 Which one is bigger, |ℕ| or |ℝ|?
This question is answered by Cantor, e.g. by using his diagonal argu-
ment.

Question 4.2 Which one is bigger, |𝒫 (ℕ)| or |ℝ|?
You might be able to answer this question: try to use the binary repre-
sentation of a real number.

Question 4.3 Is there any level of infinity strictly between |ℕ| and |ℝ|?
This question is first settled by Gödel. In a highly heuristical and popular
way of putting it into words: this question is undecidable.

https://en.wikipedia.org/wiki/Schröder–Bernstein_theorem
https://en.wikipedia.org/wiki/Schröder–Bernstein_theorem
https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument
https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument
https://en.wikipedia.org/wiki/Binary_number#Representing_real_numbers
https://en.wikipedia.org/wiki/Binary_number#Representing_real_numbers
https://en.wikipedia.org/wiki/Continuum_hypothesis
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21: Is this function well-defined?

4.6 Exercises

Exercise 4.1 Let 𝑓 , 𝑔 ∶ ℝ → ℝ be two (strictly) increasing real functions.
Define the real functions

𝑓 + 𝑔 ∶ ℝ → ℝ, (𝑓 + 𝑔)(𝑥) = 𝑓 (𝑥) + 𝑔(𝑥);
𝑓 ⋅ 𝑔 ∶ ℝ → ℝ, (𝑓 ⋅ 𝑔)(𝑥) = 𝑓 (𝑥) ⋅ 𝑔(𝑥);
𝑔 ∘ 𝑓 ∶ ℝ → ℝ, (𝑔 ∘ 𝑓 )(𝑥) = 𝑔(𝑓 (𝑥));

max(𝑓 , 𝑔) ∶ ℝ → ℝ, (max(𝑓 , 𝑔))(𝑥) = max(𝑓 (𝑥), 𝑔(𝑥));
min(𝑓 , 𝑔) ∶ ℝ → ℝ, (min(𝑓 , 𝑔))(𝑥) = min(𝑓 (𝑥), 𝑔(𝑥)).

Prove or disprove:

1. The function 𝑓 + 𝑔 is increasing;
2. The function 𝑓 − 𝑔 is increasing;
3. The function 𝑓 ⋅ 𝑔 is increasing;
4. The function 𝑔 ∘ 𝑓 is increasing;21

5. The function max(𝑓 , 𝑔) is increasing;
6. The function min(𝑓 , 𝑔) is increasing;
7. The function 𝑓 −1 exists and 𝑓 −1 is increasing.

Exercise 4.2 Let 𝐴 = {1, 2, 3} and 𝐵 = {1, 2}. Consider a function 𝑓 ∶ 𝐴 →
𝐵.

1. Can 𝑓 be a surjection? If yes, give an example.
2. Can 𝑓 be an injection? If yes, give an example.
3. Can the preimage of {1} be 𝐴? If yes, give an example.
4. Can the image of {2} be ∅? If yes, give an example.

Exercise 4.3 Let 𝐴 = {1, 2}. Consider a function 𝑓 ∶ 𝐴 → 𝐴.

1. If the range of 𝑓 is {1}, can you determine the function 𝑓 ?
2. If the range of 𝑓 is {1, 2}, can you determine the function 𝑓 ? What

are the possibilities?
3. Show that 𝑓 ∘ ⋯ ∘ 𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘 − 1 times ∘
= 𝑓 ∘ ⋯ ∘ 𝑓⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑙 − 1 times ∘
for some integers 𝑘 ≠ 𝑙.

Exercise 4.4 (Homework) Consider the functions 𝑓 ∶ ℝ → ℝwith 𝑓 (𝑥) =
𝑥2 + 𝑥 + 1 and 𝑔 ∶ ℝ → ℝ with 𝑔(𝑥) = 𝑥 − 1.

1. Find the image of the interval [−1, 1] by 𝑓 .
2. Find the preimage of the interval [2, 7] by 𝑓 .
3. Calculate 𝑔 ⋅ 𝑓 , 𝑓 ⋅ 𝑔, 𝑓 ∘ 𝑔, 𝑔 ∘ 𝑓 .

Exercise 4.5 (Homework) Consider the functions ln ∶ ℝ>0 → ℝ and
sin ∶ ℝ → [−1, 1].

1. Is ln a bijection? Is sin a bijection? If any of these answers is yes,
give the corresponding inverse function.

2. Is sin ∘ ln well-defined on the domain of ln? Is ln ∘ sin well-defined
on the domain of sin? Is ln ∘ sin well-defined on the interval (0, 1)?

3. What is the preimage of (0, 1) by ln? What is the preimage of (0, 1)
by sin?

4. Is ln monotonic? Is sin monotonic?
5. Find all solutions to the equation ln(sin(𝑥)) = 0.
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22: If you feel that something is wrong,
that’s an extremely good sign and totally
justified. You might want to check out the
axiom of choice.

Exercise 4.6 Suppose that 𝑓 ∶ 𝑋 → 𝑌 is an injection. Show that there
exists a surjection 𝑔 ∶ 𝑌 → 𝑋 .

Suppose that 𝑓 ∶ 𝑋 → 𝑌 is a surjection. Show that there exists an injec-
tion 𝑔 ∶ 𝑌 → 𝑋 .22

Exercise 4.7 (∗) Let 𝑓 ∶ [0, 1] → ℝ be a bounded function. We define a
new function 𝑔 ∶ [0, 1] → ℝ by the following:

∀𝑥 ∈ [0, 1], 𝑔(𝑥) = sup
𝑡∈[0,𝑥]

𝑓 (𝑡) = sup {𝑓 (𝑡) ; 𝑡 ∈ [0, 𝑥]} .

Verify that 𝑔 is well-defined and that 𝑔 is increasing on [0, 1].

https://en.wikipedia.org/wiki/Axiom_of_choice




1: Of course, it does not really mean
that it is the “best” formalism, which in
general does not exist. You can try to
challenge yourself by proposing another
formalism after finishing this chapter: it
seems very hard to propose a better alter-
native. That’s why in this course, and for
most scientists, we stick to this formalism.

2: The convention in this course is that,
lim𝑥→0𝐻(𝑥) ≠ 0 means “the limit of the func-

tion 𝐻 at 0 exists, but it is not 0”. By writ-
ing lim𝑥→0𝐻(𝑥), we assume implicitly that

the limit already exists.

Limits and continuity of
functions 5

This chapter is probably the most essential part of this course: we intro-
duce the rigorous definition of limit using the (𝜖, 𝛿)-formalism.1

The first encounter with a limit marks the dividing line be-
tween the elementary and the advanced parts of a school
course. Here we have not a new manipulation of old oper-
ations, but a new operation; not a new trick, but a new idea.

– Alan Broadbent

5.1 Limit of a function

Let us first look at two examples.

Example 5.1.1 Consider the function | ⋅ | ∶ 𝑥 ↦ |𝑥| from ℝ to ℝ. This
function has a limit at the point 𝑥 = 0, and the limit is 0.

We denote this by lim𝑥→0 |𝑥| = 0.

Figure 5.1: The graph of the absolute
value function.

Example 5.1.2 Consider the function 𝐻 ∶ ℝ → ℝ such that 𝐻(𝑥) = 0
if 𝑥 < 0, 𝐻(0) = 1

2 and 𝐻(𝑥) = 1 if 𝑥 > 0. This function does not have a
limit at the point 𝑥 = 0.

In this case, the notation lim𝑥→0𝐻(𝑥) makes no sense (and its usage is for-

bidden in this course), and we write simple “the limit of the function 𝐻
at 0 does not exist”.2
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Figure 5.2: The graph of the Heaviside
function.

3: Since this is an important definition,
I’m following the section II.2 of the clas-
sical textbook « Undergraduate Analysis
» by Serge Lang.

4: At a first glance, one might wonder
what the requirement on 𝑎 is in the above
definition. It is called adherence and with-
out it, we might get an empty set for 𝑥
in the above, which by the “false implies
everything” logic convention, every func-
tion is automatically continuous a point
around which the function is not even de-
fined. It does not create contradiction, but
it is rather boring.

5: I want to say, quite some number of ex-
ercises, or a lot of exercises.

How do we rigorously define the limit of a function? We introduce the
epsilon-delta definition of limit.3

Definition 5.1.1 Let 𝑓 ∶ 𝑆 → ℝ and 𝑎 ∈ ℝ such that for all 𝜖 > 0, there
exists some 𝑥 ∈ 𝑆 such that |𝑥 − 𝑎| < 𝜖.
We say that the limit of 𝑓 (𝑥) as 𝑥 approaches 𝑎 exists, if there exists a
number 𝐿 having the following property. Given 𝜖, there exists a number
𝛿 > 0 such that, for all 𝑥 ∈ 𝑆 verifying |𝑥 − 𝑎| < 𝛿 , we have |𝑓 (𝑥) − 𝐿| < 𝜖.
If that is the case, we writea

lim𝑥→𝑎 𝑓 (𝑥) = 𝐿.
a A priori, we should specify that the limit is taken with respect to 𝑆, but it can be shown
that this is not necessary. We don’t want to go into this now.

We also say that the function 𝑓 is continuous at the point 𝑎.4 In this
course, except for the study of sequences, we will be looking at limits
of functions defined on an interval 𝐼 instead of the general setting with
arbitrary set 𝑆.
The first time one comes across the above definition, there might be a
moment of doubt: is it really necessary to have such a long definition
with these symbols (𝜖, 𝛿)? Why does this definition work? How useful it
is? Although these are certainly good questions, it is impossible to make
a list of answers to everything. In this case, a safer way to proceed is
to trail and error; you should try to form your own ideas about this
definition and test it out on examples to check if it is coherent with the
reality.

So I recommand at this point to do some exercises.5 I’ll start with the
above two examples.
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6: You first have to guess if the function
𝑓 has a limit at 𝑎 or not…

Example 5.1.3 (The absolute value function is continuous at 0) By
looking at the graph of the absolute value, we guess that |𝑥 | goes to
0 as 𝑥 goes to 0, that is

lim𝑥→0 |𝑥| = 0.

To show this, we must show that, for all 𝜖 > 0, there exists a 𝛿 > 0
such that, for all 𝑥 ∈ ℝ such that |𝑥 − 0| < 𝛿 , we have ||𝑥| − 𝐿| < 𝜖 with
𝐿 = 0. The last part rewrites as for all |𝑥| < 𝛿 , we have |𝑥 | < 𝜖. Then for
any given 𝜖 > 0, the choice 𝛿 = 𝜖 suffices: in this case, we have |𝑥 | < 𝜖
implies |𝑥 | < 𝜖, which is rather obvious.

The following is an (overdetailed) illustration of a proof of discontinu-
ity.

Example 5.1.4 (TheHeaviside function is not continuous at 0) By look-
ing at the graph of the Heaviside function, we want to prove that the
limit of 𝐻(𝑥) as 𝑥 approaches 0 does not exist. Indeed, it is hard to de-
cide between the values 0, 12 , 1 as the limit and we will see that none
of them works.

To prove this, we must show that, for all 𝐿 ∈ ℝ, 𝐿 cannot be the limit of
𝐻(𝑥) as 𝑥 goes to 0. So for any 𝐿 ∈ ℝ, we want to show that there exists
an 𝜖 > 0, such that for all 𝛿 > 0, we have, for some 𝑥 ∈ ℝ, |𝑥 − 0| < 𝛿 and
|𝐻 (𝑥) − 𝐿| > 𝜖.
The difficulty is to choose the 𝜖. Let us do an analysis of the situation.
For any 𝛿 > 0, the set of values that 𝐻(𝑥) takes, with |𝑥| < 𝛿 , is exactly
{0, 12 , 1}. The quantity |𝐻 (𝑥) − 𝐿| measures the distance between 𝐻(𝑥)
and 𝐿. But for whatever 𝐿 is, one of the numbers in {0, 12 , 1} must be

at least 1
3 away from 𝐿. In other words, 𝜖 should be of the order of the

“jump” one observes at the point of discontinuity.

So take 𝜖 = 1
4 whatever 𝐿 is. If 𝐿 ≥ 1

2 , for all 𝛿 > 0, consider 𝑥 = − 𝛿
2 :

we have |𝑥 | < 𝛿 and 𝐻(𝑥) = 0, so that |𝐻 (𝑥) − 𝐿| = |𝐿| ≥ 1
2 > 𝜖. If

𝐿 < 1
2 , for all 𝛿 > 0, consider 𝑥 = 𝛿

2 : we have |𝑥| < 𝛿 and 𝐻(𝑥) = 1, so
that |𝐻 (𝑥) − 𝐿| = |1 − 𝐿| > 1

2 > 𝜖. So in all cases, we have proven the
discontinuity of 𝐻 at 𝑥 = 0, namely:

∀𝐿 ∈ ℝ, ∃𝜖 > 0, ∀𝛿 > 0, ∃𝑥 ∈ ℝ, |𝑥 − 0| < 𝛿 and |𝐻 (𝑥) − 𝐿| > 𝜖.

Now, a little bit of logic. Let us write the definition above as

∃𝐿 ∈ ℝ, ∀𝜖 > 0, ∃𝛿 > 0, ∀𝑥 ∈ 𝑆, (|𝑥 − 𝑎| < 𝛿) ⇒ (|𝑓 (𝑥) − 𝐿| < 𝜖).

This means that, if you want to prove some function 𝑓 has a limit at
some point 𝑎, the first step to do is usually…guess what the limit 𝐿 is!6

For this part, you should just trust your intuition and experience. Very
often, when the function is defined at the point 𝑎, it would be natural to
consider first 𝐿 = 𝑓 (𝑎).
Once you havemade up yourmind about the value 𝐿, it becomes quite au-
tomatic after some practise: you should write down the above definition,



40 5 Limits and continuity of functions

7: Notice that, a priori, 𝛿 and 𝛿 ′ are not
equal. But the 𝜖 can be the same for 𝐿 and
𝐿′.

8: When one faces a division 𝑓
𝑔 , one

should think of it as the multiplication of
𝑓 with 1

𝑔 . To define 1
𝑔 at a point 𝑎, you

need to first make sure that the function
𝑔 is non-zero at 𝑎. Indeed, the expression
1
𝑔 is a composition of 𝑔 by the function

𝑥 ↦ 1
𝑥 : the latter is not defined at 𝑥 = 0.

which is the same in any situation except for the last term |𝑓 (𝑥) − 𝐿| < 𝜖.
The game consists of giving an upper bound of |𝑓 (𝑥) − 𝐿| using expres-
sions involving |𝑥 − 𝑎|, since we restrict the value of |𝑥 − 𝑎| to be smaller
than 𝛿 . We will see more examples in the following.

Now, if you want to show that a function does not have a limit at 𝑎, you
should consider the negation of the above definition, which requires you
to prove something that starts with

∀𝐿 ∈ ℝ, ∃𝜖 > 0, ∀𝛿 > 0, ∃𝑥 ∈ 𝑆, …

The only choice to make here is 𝜖: it should be the magnitude of “jump”
that one observes at the discontinuity (to be cautious, take the jump as
2𝜖).

5.2 Operations on limits

First, we show that if the limit of a function 𝑓 at some point 𝑥 exists, then
it is unique.

Theorem 5.2.1 (Uniqueness of the limit) Suppose that the limit of a func-
tion 𝑓 at point 𝑎, as defined in the previous section, exists. Then this limit
is unique.

Proof. Suppose that we have

lim𝑥→𝑎 𝑓 (𝑥) = 𝐿; lim𝑥→𝑎 𝑓 (𝑥) = 𝐿′

and prove that 𝐿 = 𝐿′.
Let 𝜖 > 0 be arbitrary. By definition, there exists 𝛿 > 0 such that, for all
|𝑥 −𝑎| < 𝛿 , |𝑓 (𝑥)−𝐿| < 𝜖. Also, there exists 𝛿′ > 0 such that, for all |𝑥 −𝑎| < 𝛿 ,
|𝑓 (𝑥) − 𝐿| < 𝜖.7

Consider min(𝛿, 𝛿′) > 0 and any 𝑥 such that |𝑥 − 𝑎| < min(𝛿, 𝛿′). We have
|𝑥 − 𝑎| < 𝛿 , so |𝑓 (𝑥) − 𝐿| < 𝜖. Also, |𝑥 − 𝑎| < 𝛿′, so |𝑓 (𝑥) − 𝐿′| < 𝜖 as well. By
the triangular inequality, |𝐿 − 𝐿′| ≤ |𝐿 − 𝑓 (𝑥)| + |𝑓 (𝑥) − 𝐿′| < 2𝜖. Since 𝜖 > 0
can be arbitrary small, necessarily, 𝐿 = 𝐿′.

As you suspected: the definition of the limit is “compatible” with usual
operations on functions, such as addition, multiplication, or composi-
tion.8

Proposition 5.2.2 Let 𝑆 ⊂ ℝ, 𝑎 ∈ ℝ adherent to 𝑆 and 𝑓 ∶ 𝑆 → ℝ,
𝑔 ∶ 𝑆 → ℝ two real functions. Suppose that

lim𝑥→𝑎 𝑓 (𝑥) = 𝑀, lim𝑥→𝑎 𝑔(𝑥) = 𝐿.

Then

1. lim𝑥→𝑎(𝑓 + 𝑔)(𝑥) = 𝑀 + 𝐿;
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9: We don’t require to prove these results
in this course. However, it goes without
saying that it is a healthy exercise to try
to prove all these basic results! Otherwise,
you can open a textbook and try to un-
derstand the proofs yourself, or discuss on
the forum.

2. lim𝑥→𝑎(𝑓 ⋅ 𝑔)(𝑥) = 𝑀 ⋅ 𝐿.

We will explain this proposition during the lecture. Some simple corol-
laries:

1. lim𝑥→𝑎(𝑓 − 𝑔)(𝑥) = 𝑀 − 𝐿;
2. lim𝑥→𝑎(𝜆 ⋅ 𝑓 )(𝑥) = 𝜆𝑀, ∀𝜆 ∈ ℝ;
3. If 𝑀 = 0 or 𝐿 = 0, then lim𝑥→𝑎(𝑓 ⋅ 𝑔)(𝑥) = 0.

We end this section with the composition of limits.9

Proposition 5.2.3 Let 𝑓 ∶ 𝑆 → 𝑇 and 𝑔 ∶ 𝑇 → ℝ be two real functions.
Let 𝑎 be adherent to 𝑆. Assume that

lim𝑥→𝑎 𝑓 (𝑥) = 𝑏

and that 𝑏 is adherent to 𝑇 . Assume that

lim𝑦→𝑏 𝑔(𝑦) = 𝐿.

Then,
lim𝑥→𝑎 𝑔(𝑓 (𝑥)) = 𝐿.

5.3 Continuous functions

Once we have the epsilon-delta definition of limit, it is relatively easy to
define a continuous real function. Essentially:

Definition 5.3.1 Let 𝐼 be a real interval. A function 𝑓 ∶ 𝐼 → ℝ defined
on 𝐼 is said to be continuous on the interval 𝐼 , if 𝑓 has a limit at all
points 𝑎 ∈ 𝐼 and such that

lim𝑥→𝑎 𝑓 (𝑥) = 𝑓 (𝑎).

In this case, we say that 𝑓 is of class 𝒞 0 on the interval 𝐼 .

Most of the elementary functions you know are continuous. By a propo-
sition in the above section, we can also obtain continuous functions by
composing these elementary functions.

Proposition 5.3.1 A composite of continuous function is continuous. In
particular, the following expressionmakes sense if 𝑓 and 𝑔 are continuous
real functions (and when the composition is well-defined)

lim𝑥→𝑎 𝑔(𝑓 (𝑥)) = 𝑔( lim𝑥→𝑎 𝑓 (𝑥)).

We can also “glue” continuous functions together: this is the concept of
piecewise continuous functions. If you are interested, click on the link to
see some examples. Let us mention that the absolute value function | ⋅ |

https://en.wikipedia.org/wiki/Piecewise
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10: Actually, this might be more impor-
tant to know then the limit at a point, and
in some textbooks this comes before the
current chapter.

for example can be defined as a piecewise continuous function, but also
as an elementary function using |𝑥| = √𝑥2.

5.4 One-sided limit

In the previous section, we have not properly define the limit for a point
𝑎 at the extremity of 𝐼 , so we are going to specify those cases as well.

Definition 5.4.1 (One-sided limit) Let 𝐼 ⊂ ℝ be within the domain of
definition of 𝑓 , and 𝑎 ∈ 𝐼 some point.

The right-sided limit can be rigorously defined as:

∀𝜖 > 0, ∃𝛿 > 0, ∀𝑥 ∈ 𝐼 , 𝑥 − 𝑎 ∈ (0, 𝛿) ⇒ |𝑓 (𝑥) − 𝐿| < 𝜖.

Similarly for the left-sided limit:

∀𝜖 > 0, ∃𝛿 > 0, ∀𝑥 ∈ 𝐼 , 𝑥 − 𝑎 ∈ (−𝛿, 0) ⇒ |𝑓 (𝑥) − 𝐿| < 𝜖.

The above definition is particularly useful for defining limits at the end
points of a real interval. Notice that the difference is that we replace the
inequality |𝑥 − 𝑎| < 𝛿 by a one-sided inequality 𝑥 − 𝑎 < 𝛿 or 𝑥 − 𝑎 > −𝛿 .
There is another important case: one can define the limit of a function
at infinity.10 However, we decided to see this properly with the conver-
gence of real sequences, which is the topic of the next chapter.

5.5 Elementary functions

Before we start to state the main theorems concerning continuous func-
tions, let us admit an important fact:

Lemma 5.5.1 All elementary functions are continuous at any point where
they are defined.

Elementary functions include constant functions, logarithmic functions,
exponential functions, trigonometric functions (and their inverses), hy-
perbolic functions (and their inverses). Sum, product and composition of
finitelymany elementary functions are also elementary functions.

Example 5.5.1 For all 𝑝 ∈ ℝ, the function 𝑥 ↦ 𝑥𝑝 is an elementary
function defined on ℝ>0.

Proof. Write 𝑥𝑝 = 𝑒𝑝 ln(𝑥).

For example, if you see an expression like

𝑓 (𝑥) = 𝑒tan 𝑥
1 + 𝑥2 sin (√1 + (ln 𝑥)2) ,

https://en.wikipedia.org/wiki/Hyperbolic_functions
https://en.wikipedia.org/wiki/Hyperbolic_functions
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you can say that 𝑓 is continuous at its (largest possible) domain of defi-
nition (but you must study then the domain of definition of 𝑓 ).

5.6 Squeeze theorem

Figure 5.3: The squeeze theorem, a.k.a.
the sandwich theorem or even the police
theorem.

Theorem 5.6.1 (Squeeze theorem) Let 𝑓 , 𝑔, ℎ ∶ 𝑆 → ℝ real functions
and 𝑎 ∈ 𝑆. Suppose that for all 𝑥 sufficiently close to 𝑎, we have

𝑓 (𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥).

Suppose that the limits of 𝑓 and ℎ at point 𝑎 exist and are equal; that is,

lim𝑥→𝑎 𝑓 (𝑥) = 𝐿 = lim𝑥→𝑎 ℎ(𝑥).

Then the limit of 𝑔 at point 𝑎 exists and is equal to 𝐿; that is

lim𝑥→𝑎 𝑔(𝑥) = 𝐿.

In practise, we can use this theorem to

1. Establish the existence of a limit;
2. Calculate the value of this limit.

Example 5.6.1 Compute lim𝑥→0 𝑥
2 cos ( 2𝑥 ).

Solution. Let 𝑔(𝑥) = 𝑥2 cos ( 2𝑥 ) and 𝑓 (𝑥) = 𝑥2, ℎ(𝑥) = −𝑥2. Since | cos(𝑧)| ≤
1 for all 𝑧 ∈ ℝ, we have 𝑓 (𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) for 𝑥 sufficiently close to 0.
Since lim𝑥→0 𝑥

2 = 0, we have lim𝑥→0 𝑓 (𝑥) = lim𝑥→0 ℎ(𝑥) = 0. By the Squeeze

theorem, the limit of 𝑔(𝑥) as 𝑥 goes to 0 exists and is equal to 0.

Notice that the limit of cos ( 2𝑥 ) at the point 0 does not exist (why?).
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11: One of the exercises of this chapter
has the following result: that a surjec-
tive, increasing real function from [𝑎, 𝑏] to
[𝑓 (𝑎), 𝑓 (𝑏)] is continuous. This will be a
main input in the proof of this corollary.

5.7 Bolzano’s theorem

Figure 5.4: Bolzano’s theorem, a.k.a. the
intermediate value theorem.

Theorem 5.7.1 Let 𝑓 be a continuous function on a closed interval [𝑎, 𝑏].
Let 𝛼 = 𝑓 (𝑎) and 𝛽 = 𝑓 (𝑏). Let 𝑠 be a number such that 𝛼 < 𝑠 < 𝛽 . Then
there exists 𝑐 ∈ (𝑎, 𝑏) such that 𝑓 (𝑐) = 𝑠.

Notice the topological nature of this theorem: a continuous curve in the
plane ℝ2 can very well go from (0, 0) to (1, 0) without passing the point
( 12 , 0). What should be the analogy of Bolzano’s theorem in this case? In

some sense, in ℝ1, the point 1
2 seperates the real line into a “left” part and

a “right” part. In ℝ2, a curve that divides the plane into an “interior” part
and an “exterior” part is called a Jordan curve. Bolzano’s theorem for a
Jordan curve might seem intuitive, but it is actually not easy to prove.

Example 5.7.1 The equation 𝑥3 + 𝑥 − 1 = 0 has at least one solution in
the interval (0, 1).

Solution. Let 𝑓 (𝑥) = 𝑥3+𝑥−1. Then 𝑓 (0) = −1 and 𝑓 (1) = 1: the function
𝑓 has opposite sign at points 0 and 1. By continuity of the function 𝑓
on the interval [0, 1] and Bolzano’s theorem, there exists 𝑐 ∈ (0, 1) such
that 𝑓 (𝑐) = 0. The equation then has at least one solution 𝑐 in the
interval (0, 1).

Let usmention an important consequence of Bolzano’s theorem.

Corollary 5.7.2 If 𝑓 is a strictly monotonic continuous function on an
interval 𝐼 , then 𝑓 −1 ∶ 𝑓 (𝐼 ) → 𝐼 is continuous.

We don’t require to prove this result in the course.11

5.8 Weierstrass’ theorem

Theorem 5.8.1 Let 𝑓 be a continuous function on a closed interval [𝑎, 𝑏].

https://en.wikipedia.org/wiki/Jordan_curve_theorem
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Figure 5.5: Weierstrass’ theorem, a.k.a.
the extreme value theorem.

12: SMBC=Saturday Morning Breakfast
Cereal. Similar comics: xkcd, phdcomics,
abstruse goose.

Then there exists an element 𝑐 ∈ [𝑎, 𝑏] such that 𝑓 (𝑐) is the maximum
of 𝑓 ([𝑎, 𝑏]) and an element 𝑑 ∈ [𝑎, 𝑏] such that 𝑓 (𝑑) is the minimum of
𝑓 ([𝑎, 𝑏]).

Let us give an example of combining two theorems together.

Example 5.8.1 The image of a closed bounded interval by a continuous
function is a closed bounded interval.

Solution. Let 𝑓 ∶ [𝑎, 𝑏] → ℝ be a continuous function. By Bolzano’s
theorem, the image 𝑓 ([𝑎, 𝑏]) verifies the intermediate value property,
so it is an interval of ℝ. By Weierstrass’ theorem, it has a maximum
and a minimum, so it is bounded and closed on both end points.

5.9 Story time: the origins of rigorous Calculus

All truth passes through three stages. First, it is ridiculed. Sec-
ond, it is violently opposed. Third, it is accepted as being self-
evident.

– Arthur Schopenhauer

This chapter is already too long: stories of this type are best summerized
in SMBC.12

https://xkcd.com
http://phdcomics.com
https://abstrusegoose.com
https://www.smbc-comics.com/comic/how-math-works


46 5 Limits and continuity of functions

13: Recall that the floor function is de-
fined as ⌊𝑥⌋ = 𝑘 where 𝑘 ∈ ℤ is the unique
integer such that 𝑘 ≤ 𝑥 < 𝑘 + 1.

Figure 5.6: Comparison between sin(𝑥), 𝑥
and tan(𝑥).

14: This is not an easy exercise at first; if
you cannot solve it, try to come up with
some pictures or arguments that support
the claim!

5.10 Exercises

Exercise 5.1 (Homework) Show by the (𝜖, 𝛿)-definition that

1. The function 𝑥 ↦ 𝑥2 is continuous at −1;
2. The function 𝑥 ↦ ⌊𝑥⌋ is discontinuous at 1.13

Exercise 5.2 Consider the function 𝑓 ∶ 𝑥 ↦ 1
𝑥 defined on ℝ ⧵ {0}. Show

that

1. The function 𝑓 is continuous on ℝ ⧵ {0};
2. The function 𝑓 is not continuous at 0.

Exercise 5.3 Let 𝑓 ∶ ℝ → ℝ, 𝑔 ∶ ℝ → ℝ be two continuous functions.
Show that max(𝑓 (𝑥), 𝑔(𝑥)) is continuous on ℝ.
Exercise 5.4 Some exercises on the Squeeze theorem.

You can use the inequalities cos(𝑥) ≤ sin(𝑥)
𝑥 ≤ 1 for 𝑥 close enough to 0.

1. Show that lim𝑥→0 𝑥
2 sin ( 1𝑥 ) = 0.

2. Show that lim𝑥→0
sin(𝑥)
𝑥 = 1.

Exercise 5.5 Some exercises on the intermediate value theorem.

1. Let 𝑓 be a continuous function such that 𝑓 (0) < 0 and 𝑓 (1) > 1. By
considering the function 𝑔(𝑥) = 𝑓 (𝑥) − 𝑥 , show that 𝑓 (𝑧) = 𝑧 for
some 𝑧 ∈ (0, 1).

2. Let 𝑓 ∶ (0, 1) → ℝ be a continuous function such that lim𝑥→0 𝑓 (𝑥) = 0
and lim𝑥→1 𝑓 (𝑥) = 1. Show that 𝑓 (𝑧) = 1

2 for some 𝑧 ∈ (0, 1).

Exercise 5.6 Some exercises on the extreme value theorem.

1. Let 𝑓 ∶ [𝑎, 𝑏] → ℝ be a continuous function. Show that

sup 𝑓 ([𝑎, 𝑏]) = sup 𝑓 ((𝑎, 𝑏)).

2. Let 𝑓 ∶ ℝ → ℝ be a continuous, 1-periodic function, that is, for all
𝑥 ∈ ℝ, 𝑓 (𝑥 + 1) = 𝑓 (𝑥). Show that 𝑓 is bounded.

Exercise 5.7 (Homework) Let 𝑓 ∶ [𝑎, 𝑏] → ℝ be increasing and surjective
from [𝑎, 𝑏] to [𝑓 (𝑎), 𝑓 (𝑏)]. Show that 𝑓 is continuous.14

Exercise 5.8 (∗) In this exercises, we consider several notions stronger
than the local continuity. If 𝐼 is an interval of ℝ and 𝑓 ∶ 𝐼 → ℝ is a real
function, we say respectively that 𝑓 is uniformly continuous, Lipschitz
continuous or 𝛼-Hölder continuous with 𝛼 ∈ (0, 1) on 𝐼 if

1. (Uniform continuity)

∀𝜖 > 0, ∃𝛿 > 0, ∀𝑥, 𝑦 ∈ 𝐼 , |𝑥 − 𝑦| < 𝛿 ⇒ |𝑓 (𝑥) − 𝑓 (𝑦)| < 𝜖.

2. (Lipschitz continuity)

∃𝐾 > 0, ∀𝑥, 𝑦 ∈ 𝐼 , |𝑓 (𝑥) − 𝑓 (𝑦)| ≤ 𝐾|𝑥 − 𝑦|.
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15: A function that satisfies the interme-
diate value property is called a Darboux
function.

3. (Hölder continuity)

∃𝐶, 𝛼 > 0, ∀𝑥, 𝑦 ∈ 𝐼 , |𝑓 (𝑥) − 𝑓 (𝑦)| ≤ 𝐶|𝑥 − 𝑦|𝛼 .

Prove that any of the above implies the local continuity.

Exercise 5.9 (∗) Historically, the intermediate value property (i.e. Bolzano’s
theorem) was suggested (and rejected) as the definition of a continuous
function. In this exercise, we will study a counter-example: that is, we
study a function that satisfies the intermediate value property, but is not
continuous in the (𝜖, 𝛿)-sense.
Consider the function 𝑓 ∶ [0,∞) → [−1, 1] defined as

𝑓 (𝑥) = { sin ( 1𝑥 ) if 𝑥 > 0;
0 if 𝑥 = 0.

Prove that the limit of 𝑓 (𝑥) as 𝑥 goes to 0 does not exist; then prove that
𝑓 satisfies the intermediate value property.15
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1: The definition is not very useful for
this course: it is only a remainder that a
sequence is a function defined on an or-
dered discret set.

2: If one is really serious about notations,
it is better to distinguish {𝑢𝑛}𝑛≥0, which
is the notation for a sequence, with 𝑢𝑛 ,
which is just one term of the sequence.
However, in practice, we are used to in-
terchange them for simplicity.

Sequences: definitions and
properties 6

A sequence is a collection of objects ordered by integers. In this course,
we are mostly interested in real sequences: most often they appear in
the form of (𝑢0, 𝑢1, 𝑢2, … ), but we can give a more formal definition.1

Definition 6.0.1 A real sequence is formally a function 𝑢 ∶ ℤ → ℝ. We
will use the notation 𝑢𝑛 instead of 𝑢(𝑛):

∀𝑛, 𝑢𝑛 = 𝑢(𝑛).

Usually, we restrict the function 𝑢 to the set of departure ℤ>0 or ℤ≥0.

6.1 Classical sequences

We recall some classical sequences.2

Definition 6.1.1 (Constant sequence) A sequence 𝑢𝑛 such that 𝑢𝑛 ≡ 𝑐
for all 𝑛 ≥ 0 is called a constant sequence.

Definition 6.1.2 (Sequence with finitely many non-zero terms) A infi-
nite sequence 𝑢𝑛 such that only finitely indices 𝑛 satisfy 𝑢𝑛 ≠ 0 is called
a sequence with finitely many non-zero terms. We can identify those se-
quences with finite sequences.

In a more mathematical way, those sequences are characterized by the
property that there exists some 𝑁0 ∈ ℕ such that for all 𝑛 ≥ 𝑁0, we have
𝑢𝑛 = 0. In a compact way,

∃𝑁0 ≥ 0, ∀𝑛 ≥ 𝑁0, 𝑢𝑛 = 0.

The above sequences is also called almost zero sequences.

Definition 6.1.3 (Arithmetic sequence) Let 𝑎, 𝑏 ∈ ℝ. The sequence 𝑢𝑛
such that 𝑢0 = 𝑎 and 𝑢𝑛+1 = 𝑢𝑛 + 𝑏 is called an arithmetic sequence.

One can prove by induction that for all 𝑛 ≥ 0, 𝑢𝑛 = 𝑎 + 𝑏𝑛.

Definition 6.1.4 (Geometric sequence) Let 𝑞, 𝑟 ∈ ℝ ⧵ {0}. The sequence
𝑢𝑛 such that 𝑢0 = 𝑞 and 𝑢𝑛+1 = 𝑞 ⋅ 𝑢𝑛 is called a geometric sequence.

One can prove by induction that for all 𝑛 ≥ 0, 𝑢𝑛 = 𝑞 ⋅ 𝑟𝑛.
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6.2 Limit of a sequence

Of course, it would be difficult to say that a sequence is continuous. How-
ever, we can still define the limit of a sequence at infinity, using the
epsilon-delta formalism.

Heuristically, we want to say that a sequence converges to a limit 𝐿 if
this sequence gets closer and closer to 𝐿 and not to any other number.
Some might say that the sequence approaches 𝐿 as the index increases.
A precise definition that translates the above phrases is the following:

Definition 6.2.1 (Convergence of a sequence) We say a sequence {𝑢𝑛}𝑛≥0
converges to 𝐿 ∈ ℝ as 𝑛 goes to infinity, if for all 𝜖 > 0, there exists some
𝑁0 ∈ ℕ, such that for all 𝑛 ≥ 𝑁0, we have |𝑢𝑛 − 𝐿| < 𝜖.
In a compact way,

∃𝐿 ∈ ℝ, ∀𝜖 > 0, ∃𝑁0 ∈ ℕ, ∀𝑛 ≥ 𝑁0, |𝑢𝑛 − 𝐿| < 𝜖.

We denote the above, as in the case of function, bya

lim𝑛→∞ 𝑢𝑛 = 𝐿.
a Or more loosely, 𝑢𝑛 → 𝐿.

Compare this to the definition of the limit of a function 𝑓 at a point 𝑎:

∃𝐿 ∈ ℝ, ∀𝜖 > 0, ∃𝛿 > 0, ∀𝑥 ∈ (𝑎 − 𝛿, 𝑎 + 𝛿), |𝑓 (𝑥) − 𝐿| < 𝜖.

Here is a quick application of the above definition:

Proposition 6.2.1 (A convergent sequence is bounded) Let {𝑢𝑛}𝑛≥0 be a
convergent sequence of limit 𝐿 ∈ ℝ. Then {𝑢𝑛}𝑛≥0 is bounded (i.e. bounded
from above and from below).

Proof. Let us prove that {𝑢𝑛} is upper bounded: the lower-boundedness
will be similar. Let 𝐿 be the limit of 𝑢𝑛 and take 𝜖 = 1. Then there exists
some 𝑁 ∈ ℕ such that for all 𝑛 ≥ 𝑁 , 𝑢𝑛 ∈ (𝐿 − 1, 𝐿 + 1). In particular, the
part of 𝑢𝑛 with 𝑛 ≥ 𝑁 is upper bounded by 𝐿 + 1.
Before the term 𝑢𝑁 , there are only finitely many terms: let 𝑀 be their
maximum (which exists by finiteness). Then the sequence 𝑢𝑛 is upper
bounded by the maximum of the above bounds max(𝑀, 𝐿 + 1).

A remark on the notation: we call a sequence divergent if it is not con-
vergent (even if the sequence is bounded). In this course, we avoid using
the imprecise phrase that “a sequence converges to∞”; when we say that
a sequence converges, it means that its limit is a real number.

The Squeeze theorem for functions survives for a sequence (notice that
in the statement of this theorem for a function, no continuity is assumed:
it only concerns the definition of the limit).
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3: In some sense, the question of conver-
gence is independent of the first terms of
the sequence, just like the limit of a func-
tion at some point 𝑎 is independent of
what happens outside the interval (𝑎−𝛿, 𝑎+
𝛿) for any 𝛿 > 0.

Theorem 6.2.2 (Squeeze theorem for sequences) Suppose that we have
three sequences 𝑢𝑛 ≤ 𝑣𝑛 ≤ 𝑤𝑛 and that

lim𝑛→∞ 𝑢𝑛 = lim𝑛→∞𝑤𝑛 = 𝐿.

Then lim𝑛→∞ 𝑣𝑛 = 𝐿 (recall that this notation implicitely says that the limit

exists).

Of course, this theorem works if the comparison is only valid after “time”
𝑁0, that is, for all 𝑛 ≥ 𝑁0 with some 𝑁0 ∈ ℕ.3

We add a new theorem to our arsenal: it has similar forms for the function
case, which we will review in the next section.

Theorem 6.2.3 (Monotone convergence theorem for sequences) Sup-
pose that 𝑢𝑛 is a increasing sequence, that is, for all 𝑛 ∈ ℕ, 𝑢𝑛 ≤ 𝑢𝑛+1.
Then if 𝑢𝑛 is upper bounded, that is, if there exists some 𝑀 ∈ ℝ such that
𝑢𝑛 ≤ 𝑀 for all 𝑛, then

lim𝑛→∞ 𝑢𝑛
exists. Furthermore, this limit is smaller or equal to 𝑀 .

Again, the theorem holds even if the monotonicity is only present by
removing a finite number of terms.

6.3 The extended real line

Similarly to the convergence of sequences, one can define the limit of a
real function at infinity:

Definition 6.3.1 Let 𝑓 be a function defined on some interval [𝑎, ∞). We
say that 𝑓 (𝑥) converge 𝐿 when 𝑥 goes to infinity, if for all 𝜖 > 0, there
exists some 𝐴 ∈ ℝ such that, for all 𝑥 ≥ 𝐴, we have |𝑓 (𝑥) − 𝐿| < 𝜖.
Otherwise said, we write

lim𝑥→∞ 𝑓 (𝑥) = 𝐿

if and only if

∀𝜖 > 0, ∃𝐴 ∈ ℝ, ∀𝑥 ≥ 𝐴, |𝑓 (𝑥) − 𝐿| < 𝜖.

It enjoys the same property as the limit of a function at a point 𝑎 ∈ ℝ,
except for the composition since 𝑓 is only defined at each 𝑥 ∈ ℝ. We will
return to this particular point in a section below.

Theorem 6.3.1 (Monotone convergence theorem for function) Let 𝑓
be an upper bounded increasing function defined on some interval [𝑎, ∞).
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4: I leave it as an exercise for you to write
down the statement, since I believe that
you already get the idea.

Then the following limit exists:

lim𝑥→∞ 𝑓 (𝑥).

Notice that no requirement on the continuity is needed in the above the-
orem. The same idea applies when infinity is replaced by the end point
of an interval in the above:

Theorem 6.3.2 Let 𝑓 be an upper bounded increasing function defined
on some interval [𝑎, 𝑏). Then the following (one-sided) limit exists:

lim𝑥→𝑏− 𝑓 (𝑥).

I invite you to write a proper version for the limit at the left end-point of
the interval, since the signs can get tricky!

We add another theorem to the list:

Theorem 6.3.3 (Comparison theorem) Let 𝑓 , 𝑔 ∶ 𝑆 → ℝ and let 𝑎 be
adherent to 𝑆. Then if 𝑔(𝑥) ≤ 𝑓 (𝑥) for all 𝑥 sufficiently close to 𝑎, and the
lim𝑥→𝑎 𝑓 (𝑥) = 𝐿 and lim𝑥→𝑎 𝑔(𝑥) = 𝑀 , then 𝑀 ≤ 𝐿.

It is very important to observe that the inequality between the limit is
always a large inequality.

The comparison theorem also holds in the case of a limit at infinity, and
in particular, for sequences.4

Remark 6.3.1 Sometimes, we will see expressions of type

lim𝑥→𝑎 𝑓 (𝑥) = ∞.

A formal interpretation of this is that

∀𝐴 ∈ ℝ, ∃𝛿 > 0, ∀𝑥 ∈]𝑎 − 𝛿, 𝑎 + 𝛿[, 𝑓 (𝑥) ≥ 𝐴.

The case where 𝑎 is replace by ∞

lim𝑥→∞ 𝑓 (𝑥) = ∞

is defined similarly:

∀𝐴 ∈ ℝ, ∃𝑀 ∈ 𝕣, ∀𝑥 ≥ 𝑀, 𝑓 (𝑥) ≥ 𝐴.

6.4 Subsequence

Intuitively, a subsequence of a sequence is obtained by removing certain
terms without changing the order of the remaining terms.
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5: Historically, it was used by Bolzano in
his proof of the intermediate value theo-
rem. It has applications to economics.

Theorem 6.4.1 A sequence is convergent if and only if every subsequence
is convergent. In this case, the limits of all subsequences are the same.

This criterion gives a simple way of proving divergence of sequences,
without using the (𝜖, 𝛿)-definition.

Example 6.4.1 The sequence 𝑢𝑛 = (−1)𝑛 is not convergent.

Proof. The sequence has two convergent subsequences: 𝑢2𝑘 ≡ 1 and
𝑢2𝑘+1 ≡ −1. They are both convergent but have different limits: this
shows that the sequence 𝑢𝑛 cannot be convergent.

Another absolutely fundamental result, not required in this course, is the
Bolzano-Weierstrass theorem:5

Theorem 6.4.2 (Bolzano-Weierstrass) Each bounded real sequence has
a convergent subsequence.

There are different nice proofs of this result that you can find on the
internet.

6.5 Sequential characterization of continuity

There are a lot of interactions between sequences and functions, too
many that for this course, we can only give a sneap peak into it.

Theorem 6.5.1 Let 𝑓 ∶ 𝐼 → ℝ be a function defined on some interval 𝐼 ,
and let 𝑎 ∈ ℝ be adherent to 𝐼 . Then 𝑓 is continuous at 𝑎 if and only if,
for all sequence 𝑢𝑛 converging to 𝑎, 𝑓 (𝑢𝑛) converges to 𝑓 (𝑎).

This is extremely useful for someone familiar with sequences by not with
functions. More seriously, in most applications on sequences, we will use
it in the following form:

Corollary 6.5.2 If 𝑢𝑛 converges to 𝑎 and if a function 𝑓 is continuous at
𝑎, then 𝑓 (𝑢𝑛) converges to 𝑓 (𝑎).

Remark 6.5.1 This theorem is important in the study of convergence
of recurrent sequences. A recurrent sequence is of the form 𝑢𝑛+1 =
𝑓 (𝑢𝑛) for all 𝑛 ∈ ℕwith some initial condition 𝑢0 = 𝑎. We are interested
in understanding if the limit of 𝑢𝑛 exists, and if yes, can we calculate
it.

In the case where 𝑓 is continuous, we can apply the above theorem to
get the following: if 𝑢𝑛 converges to 𝐿 ∈ 𝕣, then 𝑓 (𝐿) = 𝐿. This shows
that the potential limits of 𝑢𝑛 are fix points of the function 𝑓 . Of course,
𝑢𝑛 can also be divergent even if 𝑓 has some fix points!

https://en.wikipedia.org/wiki/Bolzano–Weierstrass_theorem
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6: For example, with the Covid, this sec-
tions explains why a linear growth in
cases is a significantly more controllable
situation than an exponential growth in
cases.

7: However, in this course, it is forbidden
to write

lim𝑥→∞
𝑒𝑥
𝑥 = ∞.

8: At this stage, it is more of a
mnemotechnique.

6.6 Indeterminate forms at infinity

Let me state it in bold: this is a very important section for other areas
of science!6

Let me just state the result informally and discuss it:

Proposition 6.6.1 As 𝑥 goes to infinity, we have, for all 𝑝 > 0,

ln(𝑥) ≪ 𝑥𝑝 ≪ 𝑒𝑥 .

In other words, for example,7,

lim𝑥→∞
𝑥
𝑒𝑥 = 0.

These results can be properly proven, but we skip the details. By a change
of variables 𝑢 = 1

𝑥 , we can also restate it near 0:

Proposition 6.6.2 As 𝑥 goes to 0+ (we are taking the right-limit at 0 be-
cause of the ln function), we have, for all 𝑝 > 0,

− ln(𝑥) ≪ 𝑥−𝑝 ≪ 𝑒−
1
𝑥 .

In other words, for example,

lim𝑥→0+ 𝑥 ln(𝑥) = 0.

In case of doubt, a useful of recovering these formulas is via the L’Hôpital’s
rule.8

Proposition 6.6.3 (L’Hôpital’s rule) In a simplified manner, L’Hôpital’s
rule states that when you have to calculate

lim𝑥→𝑎
𝑓 (𝑥)
𝑔(𝑥)

but both the limit of 𝑓 and 𝑔 at point 𝑎 are 0 (or∞), then you can replace
it by

lim𝑥→𝑎
𝑓 ′(𝑥)
𝑔′(𝑥) .

In principle, apart from some pathological cases, you can reiterate this
procedure until you find a valid limit.

6.7 Exercises

Exercise 6.1 Determine the limits of the following sequences:

1. 𝑢𝑛 = 2+(−1)𝑛
𝑛 ;
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9: More precisely, as it is defined as a par-
tial sum, 𝑆𝑛 is usually called a series.

2. 𝑣𝑛 = 3𝑛+2
𝑛2−5 ;

3. 𝑤𝑛 = 𝑛
1
𝑛 .

Exercise 6.2 (Homework) Let {𝑢𝑛}𝑛≥0 be a sequence such that for all 𝑛 ≥ 0,
𝑢𝑛 ∈ {−1, 1}. Prove that it is impossible to have

lim𝑛→∞ 𝑢𝑛 = 0.

Exercise 6.3 Prove that none of the following sequences has a limit:

1. 𝑢𝑛 = √𝑛
2. 𝑣𝑛 = cos( 𝑛𝜋2 );
3. 𝑤𝑛 = sin(𝑛).

You can apply (𝜖, 𝛿) or find a quicker way. The last one is difficult.

Exercise 6.4 (Homework) We want to show that if {𝑎𝑛}𝑛≥0 is convergent
to 0 if and only if {|𝑎𝑛 |}𝑛≥0 is convergent to 0.

1. Use the (𝜖, 𝛿)-definition;
2. Use the Squeeze theorem;
3. Use yet another method.

Exercise 6.5 In this exercise, we study a sequence 𝑠𝑛 defined in the fol-
lowing way.9 Let 𝑎𝑛 denote the geometric sequence 𝑎𝑛 = 𝑞𝑛 for |𝑞| < 1,
and define

𝑠𝑛 =
𝑛−1
∑
𝑘=0

𝑎𝑘 = 1 + 𝑞 + ⋯ + 𝑞𝑛−1.

Show that 𝑠𝑛 converges to the limit 1
1−𝑞 .

You can use an exercise from the first week.

Exercise 6.6 (∗) In this exercise, we study the Cesàro summation. Let {𝑎𝑛}
be an arbitrary real sequence and define its partial sum {𝑠𝑛} as

𝑠𝑛 =
𝑛−1
∑
𝑘=0

𝑎𝑘 .

We call the sequence 𝑎𝑛 Cesàro summable if the sequence {𝑀𝑛}𝑛≥1 of the
arithmetic means of 𝑠𝑛,

𝑀𝑛 =
1
𝑛
𝑛−1
∑
𝑘=0

𝑠𝑘 =
1
𝑛 (𝑠0 + 𝑠1 + ⋯ + 𝑠𝑛−1)

converges.

Show that

1. The sequence 𝑏𝑛 = (−1)𝑛 is not convergent, but Cesàro summable;
2. A convergence sequence is always Cesàro summable.

Exercise 6.7 (∗) Show that a sequence is convergent toward 𝐿 if and only
if every subsequence has its own subsubsequence that converges to the
same limit 𝐿. Is the requirement that all subsubsequences converge to the
same limit necessary, or it is sufficient that everyone of them converges?
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Exercise 6.8 (∗) Let {𝑎𝑛}𝑛≥0 be a real sequence such that

1. For all 𝑛 > 0, 𝑎𝑛 ≥ 0;
2. lim𝑛→∞ 𝑎𝑛 = 0;
3. For all 𝑛 > 0,

𝑎𝑛−1 + 𝑎𝑛+1 − 2𝑎𝑛 ≥ 0.
Show that lim𝑛→∞ 𝑛(𝑎𝑛 − 𝑎𝑛+1) = 0.
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1: For now, a derivable function just
means that you know how to calculate the
derivative of the function, and that the re-
sult makes sense (e.g. the derivative is not
∞).

Calculation of derivatives 7
Roughly speaking, the derivative of a function at a given point is defined
by looking at its infinitesimal rate of change, otherwise said, the slope of
its tangent at this point. We first review some basic formulas and appli-
cations of this concept.

N.B. This chapter is informal and the focus here is the applications of
derivative; rigorous justifications will be reviewed in the next chapter.

7.1 Product rule and chain rule

Let 𝐼 , 𝐽 be two intervals of ℝ, and let 𝑓 ∶ 𝐼 → 𝐽 and 𝑔 ∶ 𝐽 → ℝ be two
derivable functions.1 Recall the formulae:

Proposition 7.1.1 The following formulas hold as long as they make
sense:

1. “Product rule”, or Leibniz rule:

(𝑓 ⋅ 𝑔)′(𝑥) = 𝑓 ′(𝑥) ⋅ 𝑔(𝑥) + 𝑓 (𝑥) ⋅ 𝑔′(𝑥);

2. “Chain rule”,2
2: Or “change of variables”, but backward.
Anyways, this is very important for the
theory of integration.(𝑔 ∘ 𝑓 )′(𝑥) = 𝑓 ′(𝑥) ⋅ 𝑔′(𝑓 (𝑥)),

where the last term is the derivative of 𝑔 evaluated at the point
𝑓 (𝑥).

3. “Quotient rule”, which is rather a combinaison of the two previous
rules:a

(𝑔ℎ)
′
(𝑥) = 𝑔′(𝑥)ℎ(𝑥) − 𝑔(𝑥)ℎ′(𝑥)

ℎ(𝑥)2 .
a Personally, I never remembers this one and I derive it everytime from the two others…

Let us start by seeing an application of the product rule.

Example 7.1.1 Let us apply the quotient rule to calculate the derivative
of the tangent function tan = sin

cos
. Recall that the tangent function is

defined whenever cos(𝑥) ≠ 0, i.e. if
We have

tan′(𝑥) = ( sin
cos

)
′
(𝑥) = sin′(𝑥) cos(𝑥) − sin(𝑥) cos′(𝑥)

cos2(𝑥) = 1
cos2(𝑥) .

It is more convenient to remember that

tan′(𝑥) = 1 + tan2(𝑥).
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We can apply the chain rule to get a useful formula relating the deriva-
tives of a function and its inverse. Although the proof will only be re-
viewed in the next chapter, here’s a quick way of recovering the for-
mula.

Corollary 7.1.2 From the relation 𝑓 (𝑓 −1(𝑥)) = 𝑥 , we get, by deriving
both sides and the chain rule,a

𝑓 ′(𝑓 −1(𝑥)) ⋅ (𝑓 −1)′(𝑥) = 1.

When (𝑓 −1)′(𝑥) ≠ 0, we have the formulab

(𝑓 −1)′(𝑥) = 1
𝑓 ′(𝑓 −1(𝑥)) .

a In a formal proof, one has to justify the derivability of both sides.
b Again, notice that 𝑓 ′(𝑓 −1(𝑥)) is the derivative of 𝑓 evaluated at the point 𝑓 −1(𝑥).

Here’s an explicit application of the corollary above.

Example 7.1.2 Consider the inverse function arctan of tan. Recall that
arctan ∶ (−𝜋, 𝜋) → ℝ.
Using two formulas above, we have that, for all 𝑥 ∈ (−𝜋, 𝜋),

arctan′(𝑥) = 1
tan′(arctan(𝑥)) = 1

1 + tan2(arctan(𝑥)) = 1
1 + 𝑥2 .

7.2 Calculation of limits

The derivative 𝑓 ′(𝑎) is defined as the infinitesimal rate of change of a
function 𝑓 at the point 𝑎. Formally,

𝑓 ′(𝑎) = limℎ→0
𝑓 (𝑎 + ℎ) − 𝑓 (𝑎)

ℎ = lim𝑥→𝑎
𝑓 (𝑥) − 𝑓 (𝑎)

𝑥 − 𝑎 ,

given that the limit exists.

We can use this definition in the other direction.

Example 7.2.1 We have

lim𝑥→0
sin(𝑥)
𝑥 = 1.

Indeed, by definition of the derivative of sin at point 0,

sin′(0) = lim𝑥→0
sin(𝑥) − sin(0)

𝑥 − 0 = lim𝑥→0
sin(𝑥)
𝑥 .

The result follows from

sin′(0) = cos(0) = 1.
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3: This can be seen as a corollary of the
mean value theorem, see next chapter.

A more sophisticated version is the L’Hôpital’s rule: we postpone its
proof until the next chapter. Just to recall how to apply this rule:

Example 7.2.2 We can calculate

lim𝑥→0
𝑒𝑥 − 1 − 𝑥 − 𝑥2

2
sin(𝑥) − 𝑥 .

Indeed, since this is an indeterminate form, by (successive applications
of) L’Hôpital’s rule, we have

lim𝑥→0
𝑒𝑥 − 1 − 𝑥 − 𝑥2

2
sin(𝑥) − 𝑥

= lim𝑥→0
𝑒𝑥 − 1 − 𝑥
cos(𝑥) − 1

= lim𝑥→0
𝑒𝑥

− sin(𝑥)
= lim𝑥→0

𝑒𝑥
− cos(𝑥)

= − 1.

There will be another explanation of the above example by Taylor ex-
pansion, although it is very unlikely that we will have time to cover it in
this course.

7.3 Monotone functions

We use the following result:3

Theorem 7.3.1 Let 𝑓 ∶ 𝐼 → ℝ be a derivable function defined on an
interval 𝐼 . If 𝑓 ′(𝑥) ≥ 0 for all 𝑥 ∈ 𝐼 , then 𝑓 is increasing.

Also, if 𝑓 ′(𝑥) > 0 everywhere, then 𝑓 is strictly increasing.

This theorem can be very helpful to compare functions. Notice that it
only gives a sufficient condition at this stage: a more general situation
will be discussed later.

Example 7.3.1 Show that for all 𝑥 ∈ [0, 𝜋2 ),

sin(𝑥) ≤ 𝑥 ≤ tan(𝑥).

(Simplified) solution. We already know that sin(0) = 0 = tan(0). Fur-
thermore,

cos(𝑥) = sin′(𝑥) ≤ 1 ≤ tan′(𝑥) = 1 + tan2(𝑥).

Since all functions are derivable on [0, 𝜋), this yields the result.
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4: This can be seen as a corollary of
Rolle’s theorem, see next chapter.

Maybe a little bit more surprisingly, this theorem can be very helpful to
establish equality between two expressions.

Example 7.3.2 Consider the hyperbolic tangent function

tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 .

We denote by artanh ∶ (−1, 1) → ℝ its inverse function. Show that

artanh(𝑥) = 1
2 ln (1 + 𝑥

1 − 𝑥 ) .

(Simplified) solution. One can calculate the derivatives of both sides:
they both yield 𝑥 ↦ 1

1−𝑥2 .

Since both sides are derivable on (−1, 1) and that they are equal when
𝑥 = 0, they must coincide over the whole interval (−1, 1).

7.4 Local minimum and local maximum

We use the following result:4

Theorem 7.4.1 Let 𝑓 ∶ 𝐼 → ℝ be a derivable function defined on an
interval 𝐼 . If 𝑎 ∈ 𝐼 is a local extremum of 𝑓 , then 𝑓 ′(𝑎) = 0.

A precise definition of the local maximum (idem for the minimum) is the
following: we call 𝑎 is a local maximum of 𝑓 if there exists some 𝛿 > 0,
such that for all 𝑥 ∈ (𝑎 − 𝛿, 𝑎 + 𝛿), we have 𝑓 (𝑥) ≤ 𝑓 (𝑎).

Example 7.4.1 Let 𝑓 (𝑥) = 𝑥2 + 𝑥 + 1. Find the image of [−1, 1] by 𝑓 .

Solution. Already, by Bolzano’s theorem andWeierstrass’ theorem, the
image of [−1, 1] by 𝑓 is a closed bounded interval [𝑎, 𝑏] of ℝ.
Let us study the minimum and the maximum of 𝑓 on [−1, 1]. For this,
we first study the equation 𝑓 ′(𝑥) = 0. Since 𝑓 ′(𝑥) = 2𝑥 + 1, 𝑓 ′(𝑥) = 0
if and only if 𝑥 = − 1

2 . So the potential minimum and maximum of 𝑓
happens at 𝑎 ∈ {−1, − 1

2 , 1} (notice that we include the end points).

Explicitly, 𝑓 (−1) = 1, 𝑓 (− 1
2) =

3
4 and 𝑓 (1) = 3. So we can conclude that

the image of 𝑓 is [ 34 , 3].

An interesting application of Rolle’s theorem is on the number of real
roots of a real polynomial function.

Example 7.4.2 Let 𝑛 ≥ 1 and 𝑃(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0 be
a real polynomial function of degree 𝑛, i.e. 𝑎𝑛 ≠ 0. Then 𝑃 has at most
𝑛 different roots in ℝ, i.e. the equation 𝑃(𝑥) = 0 has at most 𝑛 different
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5: In some sense, the mean value theorem
is intimately related to the fundamental
theorem of analysis.

solutions.

Simplified proof. We can do this by induction.

For 𝑛 = 1, this is true since 𝑃(𝑥) is then a linear function with non-zero
slope: it has one solution 𝑥 = − 𝑎0

𝑎1
.

Suppose this for 𝑛 ≥ 1 and prove it for rank 𝑛 + 1 by contradiction.
Suppose that 𝑃(𝑥), of degree 𝑛+1, has (at least) 𝑛+2 different solutions,
arranged in increasing order as 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛+2. Since a polynomial
function is derivable everywhere and that for all 𝑘 ∈ [1, 𝑛 + 1], 𝑃(𝑥𝑘) =
𝑃(𝑥𝑘+1) = 0, Rolle’s theorem tells us that 𝑃 ′ takes the value 0 at least
once at 𝑦𝑘 in (𝑥𝑘 , 𝑥𝑘+1). This is true for every 𝑘 ∈ [1, 𝑛 + 1], so we have
found 𝑛 + 1 different solutions for 𝑃 ′(𝑦) = 0, namely 𝑦1 < 𝑦2 < ⋯ < 𝑦𝑛+1.
But 𝑃 ′ is a polynomial of degree 𝑛, by induction hypothesis, it can have
at most 𝑛 diffrent solutions. This is a contradiction.

By induction, a real polynomial function of degree 𝑛 has at most 𝑛
different real roots.

It is a good place to finish this chapter by spoiling you about the funda-
mental theorem of algebra:5

Theorem 7.4.2 (D’Alembert-Gauss) Every non-constant single-variable
polynomial with complex coefficients has at least one complex root. Equiv-
alently, every non-zero, single-variable, degree 𝑛 polynomial with com-
plex coefficients has, counted with multiplicity, exactly 𝑛 complex roots.

7.5 Exercises

Exercise 7.1 Calculate the first derivatives of the following functions:

1. ℝ>0 → ℝ, 𝑥 ↦ (𝑥 ln(𝑥) − 𝑥);
2. For 𝑐 ≠ 0, ℝ → ℝ, 𝑥 ↦ 𝑒𝑐𝑥 ( 𝑥

2

𝑐 − 2𝑥
𝑐2 + 2

𝑐3 ) ;
3. ℝ → ℝ, 𝑥 ↦ 2𝑥 .

Exercise 7.2 Give the domain and codomain of the function arccos, then
calculate its derivative. Then, calculate the limit

lim𝑥→0

𝜋
2 − arccos(𝑥)

𝑥 .

Exercise 7.3 Show that for all 𝑥 > 0,

artanh(𝑥) ≥ 𝑥 + 𝑥3
3 .

Can you replace ≥ by > in the above equation?

Exercise 7.4 Use derivatives to prove that, for all 𝑥 ∈ [−1, 1],

arccos(𝑥) + arcsin(𝑥) = 𝜋
2 .
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6: This is a very special case of Grön-
wall’s lemma.

Exercise 7.5 Show that 𝑓 (𝑥) = 𝑥
2 + sin(𝑥) on the interval [0, 4] is positive.

What is the range of 𝑓 ?
Exercise 7.6 Let 𝑛 ≥ 2 and 𝑝, 𝑞 ∈ ℝ. Show that the polynomial function

𝑔(𝑥) = 𝑥𝑛 + 𝑝𝑥 + 𝑞

has at most three real roots.

Exercise 7.7 (∗) Let 𝑓 ∶ ℝ → ℝ be a positive 𝒞 1 function such that for
all 𝑥 ∈ ℝ, 𝑓 ′(𝑥) ≤ −𝑓 (𝑥). Prove that6

lim𝑥→∞ 𝑓 (𝑥) = 0.

Exercise 7.8 (∗) Let 𝑓 be derivable on the interval [0, 1]. Suppose that

𝑓 (0) = 𝑓 (1) = 𝑓 ′(0) = 0.

Show that the tangent of (the graph of) 𝑓 at some point 𝑥 ∈ (0, 1) passes
by the origin (0, 0).
Hint: you can consider the function 𝑓 (𝑥)

𝑥 .



1: Sometimes, I will say derivable func-
tions as well, but that is not the most com-
mon terminology.

2: We will not discuss this in detail in this
course, but in general, 𝑓 (𝑥) =𝑥→𝑎 𝑜(𝑔(𝑥))
means that lim𝑥→𝑎

𝑓 (𝑥)
𝑔(𝑥) = 0. Similar definition

holds when one replaces 𝑎 by ∞.

Differentiation: rigorous
definition 8

In physics, velocity of an object is defined as the rate of change of its
position, and acceleration is the rate of change of its velocity. The term
“rate of change” can be rigorously defined by the concept of derivation in
mathematics. In this chapter, we prove the formulas used previously.

8.1 Derivable functions

We first give two different definitions of a differentiable function.1 The
first one is the classical one; the second one is less useful for now, but it
will become important later.

Definition 8.1.1 Suppose that we have a real function 𝑓 defined on a
non-trivial interval 𝐼 . We say that 𝑓 is differentiable at 𝑥 ∈ 𝐼 if the
following limit (called Newton quotient) exists

limℎ→0
𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)

ℎ .

The limit is then called the derivative of the function 𝑓 at 𝑥 , and is
denoted 𝑓 ′(𝑥).

This definition is a rigorous formulation of the expression “infinitesimal
rate of change”. Let us formulate it a little differently.

Definition 8.1.2 The function 𝑓 is differentiable at point 𝑥 ∈ 𝐼 if and
only if there exists some number 𝐿, a function 𝜑(ℎ) defined for arbitrary
small value of ℎ with 𝜑(0) = 0 and

limℎ→0
𝜑(ℎ)
ℎ = 0

and such that
𝑓 (𝑥 + ℎ) = 𝑓 (𝑥) + 𝐿ℎ + 𝜑(ℎ)

for all ℎ sufficiently close to 0.

With the so-called Landau’s notation,2 any function 𝜑(ℎ) as in the above
definition is written as 𝑜(ℎ). So the above equation becomes

𝑓 (𝑥 + ℎ) = 𝑓 (𝑥) + 𝐿ℎ + 𝑜(ℎ), or
𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)

ℎ = 𝐿 + 𝑜(ℎ)
ℎ .

By definition, limℎ→0
𝑜(ℎ)
ℎ = 0, so we can identify 𝐿 with 𝑓 ′(𝑥).

The idea of the second definition is that, near a point 𝑎 where 𝑓 is differ-
entiable, the function looks like a linear function 𝑥 ↦ 𝑓 (𝑥) + 𝑓 ′(𝑥)(𝑥 − 𝑎)
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3: This is actually a first example of a Tay-
lor expansion.

with an error of order 𝑜(|𝑥 − 𝑎|).3 Another way of writing the function
𝜑(ℎ) is by putting 𝜑(ℎ) = ℎ ⋅ 𝜓 (ℎ) with limℎ→0 𝜓(ℎ) = 0.

Proposition 8.1.1 If a function 𝑓 is differentiable at some point 𝑥 , it is
continuous at the point 𝑥 .

The proposition follows from the second definition by taking the ℎ → 0
limit. In particular, the function 𝑓 is also bounded near a point 𝑥 where
𝑓 is differentiable.

8.2 Operations (with proofs)

It is not hard to see from any of the above definition that if 𝑓 and 𝑔
are both differentiable at some point 𝑥 , then the sum function 𝑓 + 𝑔 is
differentiable at 𝑥 and

(𝑓 + 𝑔)′(𝑥) = 𝑓 ′(𝑥) + 𝑔′(𝑥).

It is a little harder for the product rule: there is a nice trick to remember
in the proof.

Proposition 8.2.1 (Product rule) If 𝑓 and 𝑔 are both differentiable at
some point 𝑥 , then the product function 𝑓 ⋅ 𝑔 is differentiable at 𝑥 and

(𝑓 ⋅ 𝑔)′(𝑥) = 𝑓 ′(𝑥) ⋅ 𝑔(𝑥) + 𝑓 (𝑥) ⋅ 𝑔′(𝑥).

Proof. To study the derivative of the function 𝑓 ⋅𝑔 at point 𝑥 , we should
look at the expression (i.e. infinitesimal rate of change)

𝑓 (𝑥 + ℎ)𝑔(𝑥 + ℎ) − 𝑓 (𝑥)𝑔(𝑥)
ℎ .

Now the trick is to separate the numerator into two parts: write

𝑓 (𝑥+ℎ)𝑔(𝑥+ℎ)−𝑓 (𝑥)𝑔(𝑥) = 𝑓 (𝑥+ℎ)(𝑔(𝑥+ℎ)−𝑔(𝑥))+𝑔(𝑥)(𝑓 (𝑥+ℎ)−𝑓 (𝑥)).

Now,when ℎ goes to 0, 𝑓 (𝑥+ℎ) → 𝑓 (𝑥), 𝑔(𝑥+ℎ)−𝑔(𝑥)ℎ → 𝑔′(𝑥), 𝑓 (𝑥+ℎ)−𝑓 (𝑥)ℎ →
𝑓 ′(𝑥), so that

𝑓 (𝑥 + ℎ)𝑔(𝑥 + ℎ) − 𝑓 (𝑥)𝑔(𝑥)
ℎ → 𝑓 (𝑥)𝑔′(𝑥) + 𝑓 ′(𝑥)𝑔(𝑥).

This finished the proof.

It is a litte harder still for the chain rule: for an easier proof, we use the
second definition.

Proposition 8.2.2 (Chain rule) Let 𝑓 be defined on 𝐼 and 𝑔 be defined on
𝐽 . Suppose that 𝑥 ∈ 𝐼 , 𝑓 (𝑥) ∈ 𝐽 and that 𝑓 is differentiable at 𝑥 and 𝑔 is
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4: Although the derivative of a differen-
tiable function is not necessarily continu-
ous, it verifies the intermediate value theo-
rem: this is known as Darboux’s theorem.
Therefore, it 𝑓 ′ changes sign on the inter-
val (𝑎, 𝑏), then at some point, 𝑔 will not be
differentiable: this is why we restrict the
proposition to the constant sign case for
𝑓 ′.

differentiable at 𝑓 (𝑥). Then the composite function 𝑔 ∘ 𝑓 is differentiable
at 𝑥 and

(𝑔 ∘ 𝑓 )′(𝑥) = 𝑔′(𝑓 (𝑥)) ⋅ 𝑓 ′(𝑥).

Proof. Let ℎ be arbitrarily small and consider 𝑔(𝑓 (𝑥 + ℎ)) − 𝑔(𝑓 (𝑥)). Set-
ting 𝑘(ℎ) = 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥), this can be written as

𝑔(𝑓 (𝑥 + ℎ)) − 𝑔(𝑓 (𝑥)) = 𝑔(𝑓 (𝑥) + 𝑘) − 𝑔(𝑓 (𝑥)) = 𝑔′(𝑓 (𝑥)) ⋅ 𝑘 + 𝑘𝜓(𝑘)

with lim𝑘→0 𝜓(𝑘) = 0. We can also write 𝑘 as

𝑘(ℎ) = 𝑓 (𝑥 + ℎ) − 𝑓 (𝑥) = 𝑓 ′(𝑥) ⋅ ℎ + ℎ𝜙(ℎ)

with limℎ→0 𝜙(ℎ) = 0. Combining we get that

𝑔(𝑓 (𝑥 + ℎ)) − 𝑔(𝑓 (𝑥))
ℎ = 𝑔′(𝑓 (𝑥)) ⋅ 𝑓 ′(𝑥) + 𝑔′(𝑓 (𝑥))𝜙(ℎ) + ℎ ⋅ 𝑜(1)

and the result follows by taking the ℎ → 0 limit.

The rule for the derivative of the inverse function is harder to state, but
easier to prove.

Proposition 8.2.3 Assume that 𝑓 is differentiable on some open interval
(𝑎, 𝑏), and that 𝑓 ′(𝑥) > 0 on this interval. Then if the inverse function
𝑔 of 𝑓 is defined on some interval (𝛼, 𝛽), then 𝑔 is differentiable for any
𝑦 ∈ (𝛼, 𝛽), and

𝑔′(𝑦) = 1
𝑓 ′(𝑔(𝑦)) .

Proof. Let 𝑦0 be close to 𝑦 and study the expression

𝑔(𝑦0) − 𝑔(𝑦)
𝑦0 − 𝑦 .

We can write 𝑦0 = 𝑓 (𝑥0), 𝑦 = 𝑓 (𝑥) with 𝑥0 = 𝑔(𝑦0) and 𝑥 = 𝑔(𝑦). Then
the above expression becomes

𝑥0 − 𝑥
𝑓 (𝑥0) − 𝑓 (𝑥) = 1

𝑓 (𝑥0)−𝑓 (𝑥)
𝑥0−𝑥

.

As 𝑦0 goes to 𝑦, 𝑥0 goes to 𝑥 since 𝑔 is continuous (as the inverse of a
continuous function). Therefore, as 𝑦0 goes to 𝑦, the above expression
converges to 1

𝑓 ′(𝑥) (this limit is well-defined since 𝑓 ′(𝑥) ≠ 0, so we can

compose it with the inverse function). We finish the proof by writing
𝑥 = 𝑔(𝑦), so that 𝑔′(𝑦) exists and is equal to 1

𝑓 ′(𝑔(𝑦)) .

The requirement 𝑓 ′(𝑥) > 0 is to ensure that 𝑓 ′(𝑥) ≠ 0, in such a way that
the expression of 𝑔′(𝑦) makes sense.4

https://www.britannica.com/science/Darbouxs-theorem
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5: Although historically, Rolle’s theorem
is a corollary of the mean value theorem…

6: Although it is still worth looking at it
in any case!

8.3 Rolle’s theorem

A prelude to the mean value theorem is called Rolle’s theorem.5 Graph-
ically, it is quite easy to understand its validity. The difficulty, in some
sense, is to convince ourselves that the definition of the derivative above
is strong enough to provide a rigorous proof.

Figure 8.1: Rolle’s theorem.

Theorem 8.3.1 (Rolle’s theorem) Let 𝑓 be differentiable on some interval
(𝑎, 𝑏). Let 𝑐 ∈ (𝑎, 𝑏) such that 𝑓 (𝑐) is a maximum, i.e. for all 𝑥 ∈ (𝑎, 𝑏),
𝑓 (𝑥) ≤ 𝑓 (𝑐). Then

𝑓 ′(𝑐) = 0.

Proof. Since we need a result on 𝑓 ′(𝑐), it is natural to go back to its
definition and consider 𝑓 (𝑥) − 𝑓 (𝑐)

𝑥 − 𝑐
for 𝑥 close to 𝑐 and 𝑥 ∈ (𝑎, 𝑏) (this is possible since the interval (𝑎, 𝑏)
does not include its end points).

Notice that 𝑓 (𝑥) − 𝑓 (𝑐) ≤ 0 for all 𝑥 ∈ (𝑎, 𝑏). Now, if 𝑥 > 𝑐, then 𝑥 − 𝑐 > 0
and by the comparison theorem on limits, we have

𝑓 ′(𝑐) = lim𝑥→𝑐
𝑓 (𝑥) − 𝑓 (𝑐)

𝑥 − 𝑐 = lim𝑥→𝑐+
𝑓 (𝑥) − 𝑓 (𝑐)

𝑥 − 𝑐 ≤ 0.

Similarly, if 𝑥 < 𝑐, then 𝑥 − 𝑐 < 0 and by the compaison theorem on
limits,

𝑓 ′(𝑐) = lim𝑥→𝑐
𝑓 (𝑥) − 𝑓 (𝑐)

𝑥 − 𝑐 = lim𝑥→𝑐−
𝑓 (𝑥) − 𝑓 (𝑐)

𝑥 − 𝑐 ≥ 0.

Therefore, we are left with the only possibility that 𝑓 ′(𝑐) = 0.

Notice that the assumption of differentiability on 𝑓 is crucial, otherwise
we cannot conclude anything particularly useful only from the observa-
tion on the sign of6

𝑓 (𝑥) − 𝑓 (𝑐)
𝑥 − 𝑐 .

ViaWeierstrass’ theorem,we obtain themore convenient version:

Theorem 8.3.2 (Rolle’s theorem bis) Let 𝑓 be continuous on some non-
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trivial interval [𝑎, 𝑏] and differentiable on (𝑎, 𝑏). Suppose that 𝑓 (𝑎) = 𝑓 (𝑏).
Then there exists 𝑐 ∈ (𝑎, 𝑏) such that

𝑓 ′(𝑐) = 0.

This is a consequence of the previous form, since by Weierstrass’ theo-
rem, there exists 𝑐 ∈ (𝑎, 𝑏) such that 𝑓 (𝑐) is the maximum of 𝑓 on [𝑎, 𝑏],
and that there exists 𝑑 ∈ (𝑎, 𝑏) such that 𝑓 (𝑑) is the minimum of 𝑓 on
[𝑎, 𝑏]. To fit into the hypothesis of the theorem, we just need to show
that we can choose 𝑐 or 𝑑 different from 𝑎 or 𝑏. Indeed, if {𝑐, 𝑑} ⊂ {𝑎, 𝑏},
then since 𝑓 (𝑎) = 𝑓 (𝑏), it means that 𝑓 is constant on [𝑎, 𝑏] and Rolle’s
theorem is true. If 𝑓 is not constant on [𝑎, 𝑏], then one of 𝑐 or 𝑑 is in (𝑎, 𝑏),
and applying the previous form of Rolle’s theorem yields the result.

8.4 The main value theorem

The main value theorem is one of the most important results in analysis.
Roughly speaking, under a condition of differentiability, one is able to
compare the function on an interval to a linear function. Thus, if we are
lucky, we can replace the problem about a general function to a problem
of…linear algebra!

Figure 8.2: Mean value theorem.

Theorem 8.4.1 (Main value theorem) Let 𝑓 be continuous on some non-
trivial interval [𝑎, 𝑏] and derivable on (𝑎, 𝑏). Then there exists 𝑐 ∈ (𝑎, 𝑏)
such that

𝑓 ′(𝑐) = 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎 .

Let us discuss how to reduce the main value theorem to Rolle’s theorem:
this also serves as a prelude to the theory of Taylor expansion.

When we compare the conditions in these two theorems, we see that
the only difference is that in Rolle’s theorem, there is an extra condition
𝑓 (𝑎) = 𝑓 (𝑏). The idea then is to consider “linearly drifted version” of 𝑓 in
such a way that we can force this condition to appear.
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More precisely, let 𝑓 be continuous on some non-trivial interval [𝑎, 𝑏]
and derivable on (𝑎, 𝑏) with possibly different values 𝑓 (𝑎) and 𝑓 (𝑏). We
consider the auxiliary function

𝑔(𝑥) = 𝑓 (𝑥) + 𝛼𝑥 + 𝛽

and we want to choose 𝛼 and 𝛽 in such a way that 𝑔(𝑎) = 𝑔(𝑏). Notice that
adding a linear drift does not change the continuity and differentiability
of the function, so we can apply Rolle’s theorem on the auxiliary function
𝑔 to get some information on the original function 𝑓 .
Observe that the value of 𝛽 does not really matter. We can then search
for 𝑔 in the form

𝑔(𝑥) = 𝑓 (𝑥) + 𝛼(𝑥 − 𝑎),
which has the extra property that 𝑔(𝑎) = 𝑓 (𝑎). Solving 𝑔(𝑎) = 𝑔(𝑏), we
find 𝛼 = − 𝑓 (𝑏)−𝑓 (𝑎)

𝑏−𝑎 , in such a way that the good auxiliary function is

𝑔(𝑥) = 𝑓 (𝑥) − 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎 (𝑥 − 𝑎).

Now we can apply Rolle’s theorem to 𝑔, and find 𝑐 ∈ (𝑎, 𝑏) such that
𝑔′(𝑐) = 0. Writing this in terms of 𝑓 , we find

𝑓 ′(𝑐) = 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎 .

When writing a proof or reading a textbook, the order is usually re-
versed:

Proof. Consider the auxiliary function

𝑔(𝑥) = 𝑓 (𝑥) − 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎 (𝑥 − 𝑎).

We verify that 𝑔 is continuous on [𝑎, 𝑏], derivable on (𝑎, 𝑏) and 𝑔(𝑎) = 𝑔(𝑏).
Applying Rolle’s theorem to 𝑔 yields the existence of some 𝑐 ∈ (𝑎, 𝑏) such
that 𝑔′(𝑐) = 0. This writes

𝑓 ′(𝑐) = 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎 .

An important application, already announced in the previous chapter, is
a criteria for establishing the monotonicity of a derivable function. The
second part of the criteria is somewhat technical to read and is not re-
quired in this course.

Corollary 8.4.2 Let 𝐼 ⊂ ℝ be a real interval and 𝑓 ∶ 𝐼 → ℝ a differen-
tiable function.

1. The function 𝑓 is increasing if and only if for all 𝑥 ∈ 𝐼 , 𝑓 ′(𝑥) ≥ 0.
2. The function 𝑓 is strictly increasing if and only if for all 𝑥 ∈ 𝐼 ,

𝑓 ′(𝑥) ≥ 0 and such that the set of 𝑥 where 𝑓 ′(𝑥) = 0 contains no
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7: This is known as a special case of the
local inversion theorem.

non-trivial intervals (i.e. is of empty interior).

Proof. We only prove the first part of this corollary.

First we prove that if 𝑓 is differentiable on 𝐼 and 𝑓 is increasing, then
𝑓 ′(𝑥) ≥ 0 for all 𝑥 ∈ 𝐼 . Consider the expression

𝑓 (𝑦) − 𝑓 (𝑥)
𝑦 − 𝑥

for 𝑦 close to 𝑥 . If 𝑦 ≥ 𝑥 , then 𝑓 (𝑦) ≥ 𝑓 (𝑥) by monotonicity of 𝑓 , and
this expression is always positive. Passing to the limit, we have

𝑓 ′(𝑥) = lim𝑦→𝑥
𝑓 (𝑦) − 𝑓 (𝑥)

𝑦 − 𝑥 = lim𝑦→𝑥+
𝑓 (𝑦) − 𝑓 (𝑥)

𝑦 − 𝑥 ≥ 0

by comparison of limits. The case where 𝑥 is one of the end points of
𝐼 is similar (but you have to pick the right side for 𝑦).
Now we study the other direction: suppose that 𝑓 is differentiable on 𝐼
and 𝑓 ′(𝑥) ≥ 0 for all 𝑥 ∈ 𝐼 . To prove that 𝑓 is increasing, pick 𝑥 < 𝑦 with
𝑥, 𝑦 ∈ 𝐼 and show that 𝑓 (𝑥) ≤ 𝑓 (𝑦). Again, we look at the expression

𝑓 (𝑦) − 𝑓 (𝑥)
𝑦 − 𝑥 .

Since 𝑓 is continuous on the interval [𝑥, 𝑦] (being differentiable) and
differentiable on (𝑥, 𝑦), we can apply themean value theorem to exhibit
a number 𝑐 ∈ (𝑥, 𝑦) such that

𝑓 ′(𝑐) = 𝑓 (𝑦) − 𝑓 (𝑥)
𝑦 − 𝑥 .

Notice that 𝑐 ∈ (𝑥, 𝑦) ⊂ 𝐼 , so that 𝑓 ′(𝑐) ≥ 0 by assumption. Together
with the assumption 𝑥 < 𝑦, this shows that 𝑓 (𝑦)−𝑓 (𝑥) ≥ 0, as expected.

In this course, we will only use a weaker form of the second part of the
corollary: if 𝑓 ′(𝑥) > 0 for all 𝑥 ∈ 𝐼 , then 𝑓 is strictly increasing on 𝐼 . The
proof is similar.

Moreover, if we know that at some point 𝑥 , we have 𝑓 ′(𝑥) > 0, then
locally, 𝑓 is injective (being strictly increasing), and it is thus locally in-
vertible.7

8.5 The main value inequality

We say that a function 𝑓 is of class 𝒞 1 if 𝑓 is derivable and that 𝑓 ′ is
continuous. In this case, we can mix the mean value theoremwithWeier-
strass’ theorem to get a cooler version.

Corollary 8.5.1 (Main value inequality) Let 𝑓 be a 𝒞 1 defined on some

https://en.wikipedia.org/wiki/Inverse_function_theorem
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8: Post your question on the forum if it is
not clear! Remember, there is no bad ques-
tion in mathematics.

9: But the proof then involves the so-
called Cauchy sequence, so we leave this
part under the rug.

non-trivial interval [𝑎, 𝑏]. Then there exists a constant 𝑀 ≥ 0, such that

|||
𝑓 (𝑏) − 𝑓 (𝑎)

𝑏 − 𝑎
||| ≤ 𝑀.

In fact, one can choose 𝑀 = sup
𝑥∈[𝑎,𝑏]

|𝑓 ′(𝑥)|.

We leave the proof as an exercise.8

8.6 An extension theorem

This is sort of a “French” theorem, in the sense that it is mentioned in
many lecture notes in France, but hard to find in a English textbook. A
form of this theorem that one encounters often in practice is the follow-
ing:

Theorem 8.6.1 Let 𝑓 ∶ [𝑎, 𝑏] → ℝ be continuous and differentiable on
(𝑎, 𝑏]. Suppose that 𝑓 ′ has a right limit 𝐿 at the point 𝑎. Then 𝑓 is differ-
entiable at 𝑎, and 𝑓 ′ is continuous at the point 𝑎. In particular,

lim𝑥→𝑎+
𝑓 (𝑥) − 𝑓 (𝑎)

𝑥 − 𝑎 = 𝐿.

Actually, this theoremworks even if 𝑓 is only differentiable on (𝑎, 𝑏]with-
out assuming the continuity of 𝑓 at the point 𝑎.9

Proof. It should be clear at this point that, the main character of this
chapter is not the symbol 𝑓 ′, but rather the expression

𝑓 (𝑥) − 𝑓 (𝑎)
𝑥 − 𝑎 .

To show that 𝑓 is differentiable at 𝑎, we should show that the above ex-
pression has a limit when 𝑥 goes to 𝑎 from above (i.e. when 𝑥 goes to 𝑎+).
We can apply the mean value theorem to 𝑓 on the interval [𝑎, 𝑥], since 𝑓
is continuous on [𝑎, 𝑥] and differentiable on (𝑎, 𝑥) by assumption. So we
can find 𝑐 ∈ (𝑎, 𝑥) such that

𝑓 ′(𝑐) = 𝑓 (𝑥) − 𝑓 (𝑎)
𝑥 − 𝑎 .

As 𝑥 goes to 𝑎+, 𝑐 goes to 𝑎+ and 𝑓 ′(𝑐) goes to 𝐿 by assumption. This
shows that

lim𝑥→𝑎+
𝑓 (𝑥) − 𝑓 (𝑎)

𝑥 − 𝑎 = 𝐿.

So 𝑓 ′ is differentiable at 𝑎. Moreover, since 𝐿 is the limit of 𝑓 ′ at 𝑎, this
shows the continuity of 𝑓 ′ at the point 𝑎 as well.
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10: In particular, the pointwise limit of
a sequence of continuous function is not
necessarily a continuous function. What
is lacking here is the notion of “uniform
convergence”.

8.7 Taylor expansion

Normally, this part requires a new chapter of its own. We will be content
with having only an impressionistic view of the theory.

Figure 8.3: Claude Monet, «Waterloo
Bridge» (Hermitage), 1903.

Recall that the idea of themean value theorem is the add a linear function
to the original function 𝑓 in such a way that the new function 𝑔 verifies
𝑔(𝑎) = 𝑓 (𝑎) and 𝑔(𝑏) = 𝑔(𝑎). In other words, we add a polynomial function
𝑃1 to 𝑓 such that 𝑔 = 𝑓 + 𝑃1 satisfies 𝑔(𝑎) = 𝑓 (𝑎) and 𝑔(𝑏) = 𝑔(𝑎).
We want to generalize it in the following way: how to add a polynomial
function 𝑃𝑛 of degree 𝑛 to 𝑓 such that 𝑔 = 𝑓 + 𝑃𝑛 satisfies 𝑔(𝑎) = 𝑓 (𝑎),
𝑔′(𝑎) = 𝑓 ′(𝑎), …, 𝑔(𝑛−1)(𝑎) = 𝑓 (𝑛−1)(𝑎) and such that 𝑔(𝑏) = 𝑔(𝑎)?
I strongly suggest you to continue independently in this direction, to cre-
ate statements on your own and to try to prove them. And then, one can
check this excellent blog post of Gowers to see a well-explained argu-
ment.

8.8 Exercises

Exercise 8.1 Consider the sequence of functions

𝑓𝑛(𝑥) =
1

1 + 𝑛2𝑥
with 𝑥 ∈ ℝ≥0 and 𝑛 ∈ ℤ>0.

1. For a fixed 𝑥 ∈ ℝ≥0, what is the limit of 𝑓𝑛(𝑥) as 𝑛 goes to infinity?
2. For a fixed 𝑛 ∈ ℤ>0, what is the limit of 𝑓𝑛(𝑥) as 𝑥 goes to 0?
3. Do we have lim𝑥→0 lim𝑛→∞ 𝑓𝑛(𝑥) = lim𝑛→∞ lim𝑥→0 𝑓𝑛(𝑥)?

10

Exercise 8.2 Using the mean value theorem, find the limit

lim𝑛→∞ (𝑛1/3 − (𝑛 + 1)1/3) .

https://gowers.wordpress.com/2014/02/11/taylors-theorem-with-the-lagrange-form-of-the-remainder/
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Exercise 8.3 Show that for every positive integer 𝑛,
1

𝑛 + 1 < ln (1 + 1
𝑛) < 1

𝑛 .

Deduce that 1
2 + ⋯ + 1

𝑛 < ln(𝑛) < 1
1 + ⋯ + 1

𝑛 − 1 .

Exercise 8.4 (∗) Deduce from the previous question that

∞
∑
𝑛=1

1
𝑛 = ∞.

Modifying some of the arguments and show that

∞
∑
𝑛=1

1
𝑛 ln(𝑛) = ∞.

Exercise 8.5 Let 𝑓 ∶ [0, 100] → ℝ be a real 𝒞 1 function such that 𝑓 ′ ≥ 1
uniformly on [0, 100]. That is, for all 𝑥 ∈ [0, 100], 𝑓 ′(𝑥) ≥ 1. Show that

1. The set 𝑓 −1([−1, 1]) is a real interval;
2. The length of 𝑓 −1([−1, 1]) is upper bounded by 2.

Exercise 8.6 (∗) Determine the Taylor expansion of 𝑥 ↦ ln(1 + 𝑥) at 0 at
any order.
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