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Preface

There are many classical books on introduction to probability theory. If I write
another one for this course, it will be almost surely inferior, as I constantly discover
new things that I didn’t really understand as a student while reading these classical
references. The plan is to give an accessible course with examples that illustrate
the general principles and complement the existing references (and usually with the
simplest setting), rather than a comprehensive course that is built towards a deep
understanding of the theoretical setups. Thus, the measure theory will not be used
explicitly in the beginning but rather only alluded to, and we only recall the relevent
elements when appealed to.

Below are some references that seem to be popular in the present days, and the
course will be mainly based on the two versions.1

1. Durrett – Probability: Theory and Examples
2. Feller – An Introduction to Probability Theory and its Applications
3. Jacod, Protter – Probability Essentials
4. Williams – Probability with Martingales
5. Billingsley – Probability and Measure

As a word of warning, and it is a message that has been transmitted from my
teacher to my generation: this course will not make you a poker star. Or at least, it is
not oriented to make you discover loopholes in casinos.2

I strongly recommand you to discuss between peers or use the Ratkomo system,
as it is important to train your independence (in the non-probabilistic sense).

Have fun!
Yichao

1 My personal textbook is this set of lecture notes by Le Gall, in French but freely available: see
Chapters 8,9,10 of the file.
2 But if you learn well and try harder. . . https://www.bbc.com/news/magazine-27519748
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Chapter 1
Probability space and random variables

We recall some basic concepts from measure theory, since a probability space is
no more than a measurable space with total mass 1, and the correct way of doing
calculations in probability theory uses integration in the sense of Lebesgue. However,
bear in mind that the focus of the probability theory are not properties of measurable
spaces, but properties of random variables, which are “just” measurable functions.

1.1 Probability space

Definition 1 (Probability space). A probability space is a triple (Ω, F , P) with:

• A set of “outcomes” Ω called sample space;
• A 𝜎-field or 𝜎-algebra F whose elements are called events;
• A probability measure P : F → [0, 1] that assigns probability to events.

In particular, as a set equipped with a 𝜎-algebra, (Ω, F ) is a measurable space. The
condition that F is a𝜎-algebra, i.e. (non-empty and) stable under taking complement
and countable unions or intersections, is the assumption for which we can put a
(positive) measure 𝜇 : F → Rwhich satisfies in particular the 𝜎-additivity property
for a countable pairwise disjoint sets in Ω. More precisely:

Definition 2 (Sigma-algebra). Let F be a collection of subsets of some set Ω. We
call F a 𝜎-algebra if

• Trivial elements ∅,Ω ∈ F ;
• Stability by complement: if 𝐴 ∈ F then 𝐴𝑐 in F , where the complement is taken

with respect to Ω;
• Stability under countable unions and intersections: if {𝐴𝑛}𝑛≥1 is a countable

family of elements in F , then their union ∪𝑛≥1𝐴𝑛 and their intersection ∩𝑛≥1𝐴𝑛

are also in F .

The couple (Ω, F ) is then called a measurable space.
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Definition 3 (Measure). Given a measurable space (Ω, F ), a (positive) measure 𝜇
assigns to each element 𝐴 of F a number 𝜇(𝐴) ∈ [0,∞] (infinity is allowed in
general). Furthermore, 𝜇 should satisfy the following properties:

• Trivial elements: 𝜇(∅) = 0;
• 𝜎-additivity: for a countable collection of pairwise disjoint elements {𝐴𝑛}𝑛≥0

in F , we have

𝜇

(⋃
𝑛

𝐴𝑛

)
=

∑
𝑛

𝜇(𝐴𝑛).

Remark 1. The terminology sigma- or 𝜎- usually refers to the countability of some
family.

Definition 4 (Probability measure). A probability measure P on (Ω, F ) is a mea-
sure with P[Ω] = 1.

Remark 2. Shen 𝜇 is a finite measure, we automatically have 𝜇(∅) = 0. This is
because we must have 𝜇(∅) + 𝜇(Ω) = 𝜇(Ω) by disjointness of ∅ with any set, and
substracting 𝜇(Ω) from both sides yields the result. In particular, this holds for any
probability measure 𝜇.

Remark 3. Given a finite (and non-trivial) measure 𝜇, we can renormalize it to a
probability measure P by defining P(𝐴) as 𝜇 (𝐴)

𝜇 (Ω) .

Usually we recall some basic properties of a measure now, but we will do a more
streamlined version where basic properties from measure theory are recalled when
they are needed, and more complicated properties (usually found in an appendix of
a textbook) in the weekly reading assignments.

1.2 Random variables

A random variable is nothing but a measurable function.

Definition 5 (Measurable function). Let 𝑓 : (Ω, F ) → (𝐸, E) a function between
two measurable spaces. We say that 𝑓 is measurable if the preimage 𝑓 −1 (𝐵) of any
measurable set 𝐵 in E is measurable in F , i.e. 𝐵 ∈ E =⇒ 𝑓 −1 (𝐵) ∈ F .

Remark 4. The operation 𝑓 −1 above, when applied to a set 𝐵, refers to the preimage
and gives back a set. It is not the same as the antecedent, which requires bijectivity
of 𝑓 (we almost never use 𝑓 −1 in this sense in the course).

Definition 6 (Random variable). A random variable 𝑋 is a measurable function
from a probability space (Ω, F , P) to a measurable space (𝐸, E).

Many people write r.v. for random variables: I tend to spell them out more often (as
well as other terminologies).
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Remark 5. An analogy with topology: open sets are the “defining elements” of a
topology just as measurable sets are the “defining elements” of a measurable space.
A continuous function is an operation that respects the notion of open sets just as a
measurable function is an operation that respects the notion of measurable sets.

Example 1 (Coin toss). Consider Ω = {−1, 1} and F = {∅, {−1}, {1},Ω}. Then
(Ω, F ) is a measurable space. Together with a measure 𝜇 such that 𝜇({−1}) =
𝜇({1}) = 1, the triple (Ω, F , 𝜇) is the so-called probability space of a fair coin toss.

You may recognize that these kinds of objects in mathematics are useful for
“transferring” structures between spaces. That is, there is a natural thing to do when
you want to measure an event 𝐵 ∈ E, knowing that there is no measure directly
defined on (𝐸, E) but you dispose of a measurable function to (𝐸, E) from another
measurable space with a defined measure.

Definition 7 (Law of a random variable). The law of a random variable 𝑋 :
(Ω, F , P) → (𝐸, E) is the probability measure P𝑋 on (𝐸, E) defined as

P𝑋 [𝐵] = P[𝑋−1 (𝐵)] (1.1)

for all 𝐵 ∈ E.

So the law of a random variable 𝑋 is nothing else but the pushforward of P by 𝑋 on
(𝐸, E). However, this notion becomes fundamental in applications since it gives us
a way of calculating the probability of “observing 𝑋 in a certain state”.

Remark 6. The law P𝑋 is always a probability measure, since P𝑋 [𝐸] = P[𝑋−1 (Ω)] =
P[Ω] = 1.

Remark 7. The identity map Id : (Ω, F , P) → (Ω, F ) is always a measurable func-
tion, i.e. Id is always a random variable from a probability space to itself. The law
of Id is then P. For example, we can say that Id from the probability space of a
fair coin toss (see above) to itself is a random variable representing a fair coin toss,
although this definition is not canonical (i.e. not unique and alternative definitions
are possible).

In practise, P𝑋 [𝐵] is written more as P[𝑋 ∈ 𝐵] B P[𝜔 ∈ Ω ; 𝑋 (𝜔) ∈ 𝐵], which
should be interpreted as “the probability of observing 𝑋 in the state 𝐵”.

1.3 Real valued random variables

When considering random variables with values in a topological space such as R, it
is most natural to make the defining elements of a topological space, i.e. open sets,
measurable.
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Definition 8 (𝜎-algebra generated by a family). Let (Ω, F ) be a measurable space
and 𝐹 = {𝐴 𝑗 } 𝑗∈𝐽 a family (not necessarily countable) of elements inF . We define the
𝜎-algebra generated by 𝐹, denoted as 𝜎(𝐹), to be the smallest 𝜎-algebra containing
the family 𝐹.

The above definition is well-posed since F is always a 𝜎-algebra containing the
family 𝐹 and 𝜎-algebras are stable under arbitrarily many intersections.

Definition 9 (Borel 𝜎-algebra of R). The Borel 𝜎-algebra of R is the smallest
𝜎-algebra on R containing all open sets on R. We usually denote it by B(R).

Example 2. Let (Ω, F ) be a measurable space and 𝐴 ∈ F a measurable set. Then
𝜎(𝐴) = {∅, 𝐴, 𝐴𝑐 ,Ω} containing 4 elements if 𝐴 is non-trivial.

Example 3 (Generators of B(R)). Recall that B(R) can be also equivalently gener-
ated by any of the following family:

1. Intervals of type ]𝑎, 𝑏[∈ R;
2. Intervals of type ] − ∞, 𝑎[, 𝑎 ∈ R;
3. Intervals of type ] − ∞, 𝑎[, 𝑎 ∈ Q.

We replace the above intervals by closed intervals.

Proof. See measure theory course.

Definition 10 (Real random variable). A real random variable is a random vari-
able 𝑋 from a probability space (Ω, F , P) to (R,B(R)).

Usually, the probability space is omitted, B(R) is implicitly implied, and we write
simply 𝑋 : Ω → R. When we really want to emphasize on the probability space, we
say that 𝑋 is F -measurable.

Remark 8. Let 𝜇 be a probability measure on R. There is a canonical way of
constructing a random variable 𝑋 on R having 𝜇 as its law: choose 𝑋 as
Id : (R,B(R), 𝜇) → (R,B(R)). The induced measure is obviously 𝜇, but it is
also the law of 𝑋 by definition.

Definition 11 (Absolutely continuous real random variable). We say that 𝑋 :
Ω → R is a absolutely continuous real random variable if there exists a Borel
function 𝑝 : R→ R≥0 with

∫
R
𝑝(𝑥) = 1, such that

P𝑋 [𝐵] =
∫
𝐵
𝑝(𝑥)𝑑𝑥

for all Borel sets 𝐵 ∈ B(R). Recall that P𝑋 [𝐵] = P[𝑋 ∈ 𝐵].

Recall that a Borel function is simply a measurable function between two topological
spaces equipped with their respective Borel 𝜎-algebras.
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Remark 9. The renormalization condition
∫
R
𝑝(𝑥) = 1 comes from P𝑋 [R] = 1.

Remark 10. The Lebesgue measure 𝜆 on R is the unique measure on B(R) such that
𝜆(]𝑎, 𝑏[) = 𝑏 − 𝑎 for all 𝑎 < 𝑏.

Definition 12 (Probability density function). Let 𝑋 be an absolutely continuous
real random variable. The probability density function of 𝑋 is the Radon-Nikydym
derivative 𝑝 B 𝑑P𝑋

𝑑𝜆 of the law of 𝑋 with respect to the Lebesgue measure on R in
the definition above.

It is often called simply density or p.d.f., and sometimes denoted by 𝑓 in the literature.
In particular, we can express the following type of probability:

P[𝑎 ≤ 𝑋 ≤ 𝑏] =
∫ 𝑏

𝑎
𝑝(𝑥)𝑑𝑥,

i.e., the probability of 𝑋 “falling” in the interval [𝑎, 𝑏]. In particular, one could think
of 𝑝(𝑥)𝑑𝑥 as the probability of 𝑋 being in the infinitesimal interval [𝑥, 𝑥 + 𝑑𝑥].

Remark 11. The density function is unique modulo a set of Lebesgue measure 0,
since modifying it on a Lebesgue null-set does not affect its Lebesgue integrals.

A real random variable 𝑋 might be continuous, i.e. P[𝑋 = 𝑎] = 0 for all 𝑎 ∈ R,
without having a density function, i.e. 𝑋 might not be absolutely continuous (actually,
absolutely continuous refers to absolute continuity of the law of 𝑋 with respect to the
Lebesgue measure). That is, the distribution of 𝑋 might be “supported” on a set of
Lebesgue measure 0, i.e. 𝑋 is a singular continuous distribution. This corresponds to
the singular part in the Radon-Nikodym decomposition theorem: a typical example is
the so-called Cantor’s distribution. We will study more characterizations next week
with the notion of cumulative distribution function.

Remark 12. In this course, we mainly deal with absolutely continuous random vari-
ables, especailly when performing calculations.

1.4 Sigma-algebra of a random variable

Given a random variable 𝑋 : (Ω, F , P) → (𝐸, E), we don’t need all F to make 𝑋
measurable.

Definition 13 (𝜎-algebra of a random variable). Let 𝑋 : (Ω, F , P) → (𝐸, E) be
a random variable. The 𝜎-algebra generated by 𝑋 , denoted by 𝜎(𝑋), is defined as

𝜎(𝑋) B {𝑋−1 (𝐵), 𝐵 ∈ E} ⊂ F .
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In practise, most events that we study in this course are given in this form. In some
sense, 𝜎(𝑋) is when you can infer about the structure of F by inspecting the random
variable 𝑋 . Sometimes we say that 𝜎(𝑋) contains the information given by 𝑋 .

Remark 13. The𝜎-algebra of 𝑋 is a𝜎-algebra: this is because the operation of taking
the preimage is distributive with respect to unions and intersections.

Remark 14. Consider a random variable 𝑋 : (Ω, F , P) → {−1, 1} modelizing a fair
coin toss. The 𝜎-algebra generated by 𝑋 is 𝜎(𝑋) = {∅, 𝑋−1 ({−1}), 𝑋−1 ({1}),Ω}.
This is the maximal structure (or partition in some sense) you can deduce on F by
observing the results of a coin toss, that there is a part in F that leads to −1, and its
complement that leads to 1.

We may want to make more several random variables measurable at once.

Definition 14 (𝜎-algebra of a family of random variables). Given an arbitrary
family of random variables {𝑋 𝑗 } 𝑗∈𝐽 with value respectively in (𝐸 𝑗 , E 𝑗 ) for each
𝑗 ∈ 𝐽, the 𝜎-algebra generated by {𝑋 𝑗 } 𝑗∈𝐽 is

𝜎({𝑋 𝑗 } 𝑗∈𝐽 ) B 𝜎{𝑋−1
𝑗 (𝐵 𝑗 ), 𝑗 ∈ 𝐽, 𝐵 𝑗 ∈ E 𝑗 }. (1.2)

In other words, it is the smallest 𝜎-algebra that makes each random variable mea-
surable.

Remark 15. The collection of preimages {𝑋−1
𝑗 (𝐵 𝑗 ), 𝑗 ∈ 𝐽, 𝐵 𝑗 ∈ E 𝑗 } is in general not

enough in the above definition, since it is not in general a 𝜎-algebra. We “complete”
it to a 𝜎-algebra by taking the smallest 𝜎-algebra containing this collection of sets.

Up next is a special case of measurability with respect to (the 𝜎-algebra generated
by) a random variable.

Proposition 1 (Measurability with respect to a random variable). Let 𝑋 be a
random variable with value in (𝐸, E), and𝑌 a real random variable. Then𝑌 is𝜎(𝑋)-
measurable if and only if there exists a measurable function 𝑓 : (𝐸, E) → (R,B(R))
such that 𝑌 = 𝑓 (𝑋).

Proof. If such a measurable function 𝑓 exists, then 𝑌 is 𝜎(𝑋)-measurable by com-
position of measurable functions. In the other direction, suppose that 𝑌 is 𝜎(𝑋)-
measurable and construct such measurable function 𝑓 . We will use the fact that any
measurable function can be written as the pointwise limit of a sequence of simple
functions.

Start by the case of a 𝜎(𝑋)-measurable simple function 𝑌 =
∑𝑛

𝑗=1 𝑎 𝑗1𝐴 𝑗 with
𝐴 𝑗 ∈ 𝜎(𝑋). Actually, start by the case that 𝑌 = 𝑎 𝑗1𝐴 𝑗 with 𝐴 𝑗 ∈ 𝜎(𝑋) and find the
appropriate 𝑓 . Since 𝐴 𝑗 ∈ 𝜎(𝑋), we can write 𝐴 𝑗 as 𝑋−1 (𝐵 𝑗 ) for some 𝐵 𝑗 ∈ E.
Now if 𝜔 ∈ 𝐴 𝑗 , 𝑌 (𝜔) = 𝑎 𝑗 and 𝑋 (𝜔) ∈ 𝐵 𝑗 ; and if 𝜔 ∉ 𝐴 𝑗 , 𝑌 (𝜔) = 0. We can then
put 𝑓 = 𝑎 𝑗1𝐵 𝑗 , and 𝑓 is E-measurable. I leave you to generalize this to all simple
functions 𝑌 .
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The next approximation argument is more abstract but is almost automatic af-
ter using it several times. We know that any 𝜎(𝑋)-measurable function 𝑌 can be
approximated by 𝜎(𝑋)-measurable simple functions 𝑌𝑛, and let 𝑓𝑛 denotes the cor-
responding E-measurable simple functions as above. It is natural to define 𝑓 (𝑥)
as the limit of 𝑓𝑛 (𝑥) for all 𝑥 ∈ 𝐸 , but this limit does not necessarily exist, and
we put 𝑓 (𝑥) = 0 in this case. Now for any 𝜔 ∈ Ω, 𝑋 (𝜔) is in the set where the
limit of 𝑓𝑛 (𝑥) exists, since 𝑓𝑛 (𝑋 (𝜔)) = 𝑌𝑛 (𝜔) → 𝑌 (𝜔). Now by definition of 𝑓 ,
𝑓 (𝑋 (𝜔)) = lim 𝑓𝑛 (𝑋 (𝜔)) = 𝑌 (𝜔), and this finishes the proof.

1.5 Classical laws

Discrete laws

1. Uniform distribution: if 𝐸 is a set with 0 < 𝑛 < ∞ elements, then a random
variable 𝑋 with value in (𝐸, E) is uniformly distributed on 𝐸 if P[𝑋 = 𝑥] = 1/𝑛
for all 𝑥 ∈ 𝐸 .

2. Bernoulli distribution of parameter 𝑝 ∈ [0, 1]: it is the law of a random variable
𝑋 with value in {0, 1} such that P[𝑋 = 1] = 𝑝 and P[𝑋 = 0] = 1 − 𝑝.

3. Binomial distribution B(𝑛, 𝑝) with integer 0 < 𝑛 < ∞ and 𝑝 ∈ [0, 1]: it is
the law of a random variable 𝑋 with value in {1, . . . , 𝑛} such that P[𝑋 = 𝑘] =
𝐶𝑘
𝑛 𝑝

𝑘 (1 − 𝑘)𝑛−𝑘 .
4. Geometric distribution with parameter 𝑝 ∈ (0, 1): it is the law of a random

variable 𝑋 with value in Z≥0 such that P[𝑋 = 𝑘] = (1 − 𝑝)𝑝𝑘 . It modelizes e.g.
the law of the first appearance of tail in a sequence of independent baised coin
tosses.

5. Poisson distribution with parameter 𝜆 > 0: it is the law of a random variable 𝑋
with value in Z>0 with P[𝑋 = 𝑘] = 𝜆𝑘

𝑘! 𝑒
−𝜆 for all 𝑘 ∈ Z>0.

(Absolutely) continuous laws

Recall that the law of a absolutely continuous real random variable 𝑋 is characterized
by its density function 𝑝(𝑥).
1. Uniform distribution on (𝑎, 𝑏): 𝑝(𝑥) = 1

𝑏−𝑎1(𝑎,𝑏) (𝑥).
2. Exponential distribution with parameter 𝜆 > 0: 𝑝(𝑥) = 𝜆𝑒−𝜆𝑥1R>0 (𝑥).

3. Gaussian distribution N(𝜇, 𝜎2) with 𝜎 > 0: 𝑝(𝑥) = 1
𝜎
√

2𝜋
𝑒
− (𝑥−𝜇)2

2𝜎2 .

Exponential distributions 𝑋 ∼ Exp(𝜆) have the special property that P[𝑋 > 𝑎+ 𝑏] =
P[𝑋 > 𝑎]P[𝑋 > 𝑏] for any 𝑎, 𝑏 > 0, which later (after you would have learnt
about conditional probability) will be interpreted as the “loss of memory” property.
Gaussian distributions are also called normal distributions, and the case N(0, 1) is
called standard normal distribution.
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Chapter 2
Calculations with real random variables

We give several concrete examples of calculations: many results are merely transla-
tions from a course on Lebesgue integration. However, as Feller puts it:

“. . . but it should be borne in mind that numerical probabilities are not the principle objects of
the theory. Its aim is to discover general laws and construct satisfactory theoretical models.”

2.1 Expectation

The expectation of a random variable gives the average of the random variable.

Definition 15 (Expectation). Let 𝑋 be a real random variable. The expectation of
𝑋 , denoted by

E[𝑋] B
∫
Ω
𝑋 (𝜔)P(𝑑𝜔),

if well-defined in either of the following cases:

• if 𝑋 ≥ 0, in which case E[𝑋] ∈ [0,∞];
• if E[|𝑋 |] =

∫
|𝑋 |𝑑P < ∞.

We sometimes also call E[𝑋] the mean of the random variable 𝑋 .

Remark 16. The expectation is linear, i.e. E[𝑎𝑋 +𝑏𝑌 ] = 𝑎E[𝑋] +𝑏E[𝑌 ] for all scalar
𝑎, 𝑏. In fact, all the good properties of an integrable function apply to the expectation
since it is just another name for the integral of a measurable function.

We recall briefly some important theorems above convergence of an integral
(against a probability measure):

Theorem 1 (Monotone convergence theorem, a.k.a. Beppo-Levi’s lemma). If
𝑋𝑛 ≥ 0 for all 𝑛 and {𝑋𝑛} increases pointwise and converges to 𝑋 , then E[𝑋𝑛]
(increases and) converges to E[𝑋].
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Theorem 2 (Fatou’s lemma). Consider a sequence of positive real random vari-
ables, i.e. 𝑋𝑛 ≥ 0 for all 𝑛. Then E[lim inf𝑛 𝑋𝑛] ≤ lim inf𝑛 E[𝑋𝑛].

The positivity assumption in Fatou’s lemma cannot be dropped directly.

Theorem 3 (Dominated convergence theorem). Consider a sequence of real ran-
dom variables {𝑋𝑛} dominated by 𝑍 ∈ 𝐿1, i.e. |𝑋𝑛 | ≤ 𝑍 , E[𝑍] < ∞. Then if 𝑋𝑛

converges to 𝑋 , we get E[𝑋𝑛] → E[𝑋].

In probability theory, one uses almost surely (or a.s. in short) instead of almost
everywhere (or a.e.) when the measure in question is a probability measure.

We now revisit the law of a random variable using expectation.

Proposition 2 (A useful representation for the law). Let 𝑋 be a real random
variable with value in (𝐸, E). Then for all measurable functions 𝑓 : (𝐸, E) →
(R≥0,B(R≥0)), we have

E[ 𝑓 (𝑋)] =
∫
𝐸
𝑓 (𝑥)P𝑋 (𝑑𝑥).

If 𝑓 is not necessarily positive, the formula remains true under the condition that
E[| 𝑓 (𝑋) |] < ∞.

Proof. By definition, the result is true for 𝑓 = 1𝐵 with 𝐵 ∈ E. By linearity, the
result is true for 𝑓 =

∑𝑛
𝑘=1 𝑏𝑘1𝐵𝑘 , i.e. for all simple functions. Recall that any non-

negative measurable function is the pointwise limit of an increasing sequence of
non-negative simple functions. Thus, by monotone convergence, the result is true
for all non-negative measurable functions. The other case follows similarly by using
dominated convergence instead.

Remark 17. It follows from the definition of the Lebesgue integral thatE[1𝐴] = P[𝐴]
for any measurable set 𝐴 ∈ Ω, where 1𝐴 is the indicator function.

Remark 18. The converse of this proposition is also true: if the relation above holds
for any measurable function 𝑓 , then the measure P𝑋 is the law of 𝑋 . To see this,
choose 𝑓 to be the indicator function 1𝐵 of any measurable set 𝐵 ∈ E, and the
relation writes P[𝑋 ∈ 𝐵] = P𝑋 [𝐵], which is the defining relation for the law P𝑋 .

What is important in practise is the following inverse statement: if we can write

E[ 𝑓 (𝑋)] =
∫

𝑓 𝑑𝜈,

for “sufficiently many” functions 𝑓 , then we can identify 𝜈 as the law of 𝑋 . We will
discuss about the “sufficient many” condition later in this course.
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2.2 Moments

Definition 16 (Moment of a random variable). Let 𝑋 be a real random variable
and 𝑝 a real number. The 𝑝-th moment of 𝑋 is the quantity

E[𝑋 𝑝],

defined when 𝑋 ≥ 0 or E[|𝑋 |𝑝] < ∞.

We define similarly as in the integration course the spaces 𝐿 𝑝 (Ω, F , P) for 𝑝 ∈
[1,∞], with norm | |𝑋 | |𝐿𝑝 = E[|𝑋 |𝑝]1/𝑝 for 𝑝 ∈ [1,∞) (this norm is also written as
| | · | |𝑝) and | | · | |∞ is the (essential) sup-norm, see below.

Remark 19. The 0-th moment of a random variable is always 1 and the first moment
of a random variable is just the expectation (provided that it exists).

Remark 20. The expectation of a random variable that is almost surely 0 is 0. Con-
versely, if the expectation of a positive random variable is 0, then the random variable
is almost surely 0.

Remark 21. If the expectation of a positive random variable is finite, then the random
variable is almost surely finite.

Remark 22. Knowing all (positive) integer moments of a probability measure does
not necessarily characterize its law. Determining some sufficient conditions is known
as the moment problem.

A lot of inequalities should be recalled here. The most important ones are:

Lemma 1 (Cauchy-Schwarz). Suppose that some real random variables 𝑋,𝑌 are
in 𝐿2. Then

E[|𝑋𝑌 |] ≤ E[𝑋2]1/2E[𝑌2]1/2.

Remark 23. Taking 𝑋 = 𝑌 , we have E[|𝑋 |]2 ≤ E[𝑋2].

Remark 24. Sometimes, Cauchy-Schwarz makes sense even when E[𝑋2] = ∞: we
will get a trivial bound of type 𝑥 ≤ ∞.

Remark 25. The equality holds in Cauchy-Schwarz if and only if 𝑋 and 𝑌 are almost
surely colinear, i.e. there exists some 𝛼 ∈ R such that P[𝑌 = 𝛼𝑋] = 1.

Lemma 2 (Hölder). Suppose that 𝑋 ∈ 𝐿 𝑝 (Ω, F , P) and 𝑌 ∈ 𝐿𝑞 (Ω, F , P) with
𝑝, 𝑞 ∈ [1,∞] and 1/𝑝 + 1/𝑞 = 1. Then

E[|𝑋𝑌 |] ≤ E[𝑋 𝑝]1/𝑝E[𝑌𝑞]1/𝑞 .

Remark 26. Using Hölder, we can recover Cauchy-Schwarz by choosing 𝑝 = 𝑞 = 2.
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Remark 27. Writing E[|𝑋 |𝑟 ] ≤ E[( |𝑋 |𝑟 ) 𝑝/𝑟 ] and apply Hölder with 𝑌 = 1, we
recover that | |𝑋 | |𝐿𝑟 ≤ ||𝑋 | |𝐿𝑝 if 1 ≤ 𝑟 ≤ 𝑝: this also shows that 𝐿 𝑝 ⊂ 𝐿𝑟 if 𝑟 ≤ 𝑝.
This is true even if 𝑝 = ∞ (see below for the definition of the essential-sup norm).

Remark 28. The above remark also shows that the relation 1/𝑝 + 1/𝑞 ≤ 1 is enough
for Hölder to hold in a probability space.

Sometimes 𝑞 is called the conjugate exponent, but it is good to write down the
relation everytime you use it.

Lemma 3 (Minkowski). For 𝑝 ≥ 1, we have | | 𝑓 +𝑔 | |𝐿𝑝 ≤ || 𝑓 | |𝐿𝑝 + ||𝑔 | |𝐿𝑝 . In other
words, 𝐿 𝑝 with 𝑝 ≥ 1 is a normed space with norm | | · | |𝐿𝑝 .

Recall that we systematically identify measurable functions which are equal almost
everywhere. In particular, the essential sup-norm | | · | |∞ should be defined as

| | 𝑓 | |∞ B inf{𝑡 ≥ 0 ; 𝜇(| 𝑓 | > 𝑡) = 0}.

Indeed, we can modify 𝑓 on a set of measure 0 in such a way that the modified
function 𝑓 is bounded by | | 𝑓 | |∞ in absolute value.

Remark 29. When 0 < 𝑝 < 1, the useful inequality is E[(𝑋+𝑌 ) 𝑝] ≤ E[𝑋 𝑝] +E[𝑌 𝑝]
for positive random variables 𝑋,𝑌 . In fact, this comes the deterministic sub-additivity
inequality that (𝑥 + 𝑦) 𝑝 ≤ 𝑥𝑝 + 𝑦𝑝 for 0 < 𝑝 < 1 and 𝑥, 𝑦 ≥ 0.

Lemma 4 (Jensen). Suppose that 𝑋 is a real random variable and 𝜑 : R→ R≥0 a
convex function. Then

𝜑(E[𝑋]) ≤ E[𝜑(𝑋)] .

The positivity assumption on 𝜑 is crucial and cannot be dropped.

Remark 30. Once again, by choosing the convex function 𝜑(𝑥) = 𝑥2, we get
E[|𝑋 |]2 ≤ E[𝑋2] using a new method.

2.3 Cumulative distribution function

Definition 17 (Cumulative distribution function). Let 𝑋 be a real random variable.
The cumulative distribution function of 𝑋 is defined as

𝐹𝑋 (𝑡) B P[𝑋 ≤ 𝑡] = P𝑋 (] − ∞, 𝑡]), 𝑡 ∈ R.

Sometimes it is called just distribution function.1 Also, we will start to gradually
stop using the notation P𝑋 and prefer notations of type P[𝑋 ≤ 𝑡].

1 And worse, sometimes it is called probability distribution function and abbreviated as p.d.f., which
is the same for probability density function! Another reason for me to spell everything out in this
note.
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Proposition 3 (Distribution function determines the law). The cumulative distri-
bution function of a real random variable 𝑋 characterizes the law of 𝑋 .

Proof. This can be shown by using Dynkin’s lemma, cf. reading assignement of last
week.

It is easy to see that 𝐹 is increasing, has limit 0 at −∞ and limit 1 at ∞, and
P[𝑎 < 𝑋 ≤ 𝑏] = 𝐹𝑋 (𝑏) − 𝐹𝑋 (𝑎) for 𝑎 < 𝑏. The space of cumulative function is
essentially characterized by its càdlàg property: see exercise.

Definition 18 (Continuous real random variable). We call a real random variable
𝑋 continuous if its cumulative distribution function 𝐹𝑋 is continuous.

In particular, any absolutely continuous real random variable is a continuous real
random variable. In some texts, a continuous real random variable refers to an
absolutely continuous real random variable (i.e. with probability density function),
and by singular distribution they refer to the the somewhat pathological singlar
continuous distribution. The terminology might differ, so it might be safe to specify
based on the context.

Remark 31. A point of discontinuity where 𝐹𝑋 is not continuous corresponds to an
atom for a probability measure. The law of a continuous random variable has no
atoms.

Definition 19 (Singular distribution). We call a real random variable 𝑋 (continu-
ous) singular if its cumulative distribution function 𝐹𝑋 is continuous and singular.
That is, 𝐹𝑋 is continuous, non-constant and the derivative of 𝐹𝑋 vanishes almost
everywhere.

Remark 32. A typical example of continuous singular random variable is given by
the so-called Cantor distribution.

With positive random variables, the following quantity is used more often:

Definition 20 (Tail distribution). The tail distribution, or complementary cumu-
lative distribution function, is defined as

𝐹𝑋 (𝑡) B 1 − 𝐹𝑋 (𝑡) = P[𝑋 > 𝑡] .

The following inequality is of fundamental importance:

Lemma 5 (Markov’s inequality). Let 𝑋 ≥ 0. Then for all 𝑎 > 0,

P[𝑋 > 𝑎] ≤ E[𝑋]
𝑎

.
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The following form is often useful: let 𝜑 : R≥0 → R≥0 be an increasing function,
then for any 𝑎 > 0, P[|𝑋 | > 𝑎] ≤ E[𝜑 ( |𝑋 |) ]

𝜑 (𝑎) . The proof for this follows by considering
the auxiliary positive random variable 𝑌 = 𝜑(|𝑋 |). You will learn how to choose the
good increasing function 𝜑 with experience: it often has to do with the “size” of the
tail of the (positive) random variable 𝑋 .

Proof. ConsiderE[𝑋1𝑋>𝑎]. On the one hand, it is smaller than E[𝑋] by positivity of
𝑋 . On the other hand, it is larger than E[𝑎1𝑋>𝑎] since 𝑋 > 𝑎 on the event {𝑋 > 𝑎}.
It remains to use the linearity of the expectation to write E[𝑎1𝑋>𝑎] = 𝑎P[𝑋 > 𝑎].

Remark 33. One can show that 𝑎P[𝑋 > 𝑎] → 0 as 𝑎 → ∞, if 𝑋 ∈ 𝐿1. Indeed, in
the above proof, we see that E[𝑎1𝑋>𝑎] ≤ E[|𝑋 |] for all 𝑎, so that by dominated
convergence with the integrable majorant |𝑋 |, E[𝑎1𝑋>𝑎] converge to 0 as 𝑎 goes to
infinity.

Remark 34. Let 𝑋 ∈ 𝐿2 (Ω, F , P). Applying Markov’s inequality to the positive
random variable (𝑋 − E[𝑋])2 entails the Tchebyshev’s inequality

P[|𝑋 − E[𝑋] | > 𝑎] ≤ var(𝑋)
𝑎2 , ∀𝑎 > 0,

where var(𝑋) is the variance of 𝑋 defined as var(𝑋) = E[𝑋2] − (E[𝑋])2.

2.4 Characteristic function

The terminology characteristic function in probability is reserved to denote Fourier
transforms of probability measure. Functions of type 1𝐴 (or 𝜒𝐴) will be called
indicator functions.

Definition 21 (Characteristic function). Let 𝑋 be a real random variable. The
characteristic function of 𝑋 , denoted by Φ𝑋 : R→ C, is defined by

Φ𝑋 (𝜉) = E
[
𝑒𝑖 𝜉𝑋

]
=

∫
R
𝑒𝑖 𝜉 𝑥P𝑋 (𝑑𝑥).

Remark 35. By triangular inequality, |Φ𝑋 | is bounded by 1. Later, we will see that
Φ𝑋 is uniformly continuous (by dominated convergence).

Remark 36. Suppose that 𝑋 is an absolutely continuous real random variable with
density function 𝑝(𝑥). In this case,

Φ𝑋 (𝜉) =
∫
R
𝑒𝑖 𝜉 𝑥 𝑝(𝑥)𝑑𝑥.

The following result is central, we will prove it later in the course.
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Theorem 4 (Characteristic function determines the law). The characteristic func-
tion of any real-valued random variable completely defines its probability distribu-
tion.

To define (the law of) a random variable, it is equivalent to give its characteristic
function. Therefore, it is important, at some point, to calculate the characteristic
functions of all classical laws. Indeed, there are results that can be resumed as “after
some calculations we have found a good-looking characteristic function, so we have
identified the law”. . .

Example 4. Let 𝑁 be a real random variable distributed as the standard Gaussian
N(0, 1). Then Φ𝑁 (𝜉) = 𝑒−𝜉 2/2.

2.5 Some more topics

Here are some topics worth mentioning. It is not planned that we will make explicit
use of them in this course, but this is only because we have a limited schedule.

1. 𝐿 𝑝-spaces (! – functional analysis).
2. Moment generating function (and/or Laplace transform) (engineering).
3. Cumulant (statistics).
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Exercise set I

Exercises marked with ! are important and those with ★ are difficult.

Exercise 1 (Absolute value). Let 𝑓 : R→ R. Show that | 𝑓 | is Borel-measurable if
and only if 𝑓 is Borel-measurable. Is this exercise correct?

Exercise 2 (Operations on random variables). Let 𝑋1, . . . , 𝑋𝑛, . . . be a sequence
of real random variables, all from the same probability space (Ω, F , P) to (R,B(R)).
Show that the followings are also random variables:

𝑋1 + 𝑋2; sup
𝑛
𝑋𝑛; lim inf

𝑛
𝑋𝑛.

Deduce that the set where lim𝑛 𝑋𝑛 exists is measurable.

Exercise 3 (Variance). Let 𝑋 ∈ 𝐿2 (Ω, F , P) and define its variance

var(𝑋) B E[(𝑋 − E[𝑋])2] .

Find a relation between E[(𝑋 − 𝑎)2] and var(𝑋) for 𝑎 ∈ R, and show that

var(𝑋) = inf
𝑎∈R
E[(𝑋 − 𝑎)2] .

Exercise 4 (! – Pointwise convergence does not imply convergence in mean). Give
an example of a sequence of positive real random variables 𝑋𝑛, each with E[𝑋] = 1,
where 𝑋𝑛 converges pointwise to some limit 𝑋∞ but E[𝑋∞] = 0.

Exercise 5 (! – Characteristic functions of a Gaussian variable). Calculate the
characteristic function of a Gaussian variable N(𝜇, 𝜎2) with 𝜎 > 0.

Exercise 6 (Moments of the semi-circular law). Consider the semi-circular law 𝑋
with probability density function

𝑓 (𝑥) = 1
2𝜋

√
4 − 𝑥2, 𝑥 ∈ [−2, 2] .
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1. Calculate its mean.
2. Calculate its variance.
3. (★) Calculate all positive integer moments of 𝑋 and find a connection with the

so-called Catalan numbers.

Exercise 7 (★ – Càdlàg). The term “càdlàg” (continue à droite, limite à gauche in
French) means right continuous with left limit. More precisely, 𝑓 is càdlàg means
that for all point 𝑡 ∈ R, the left limit 𝑓 (𝑡−) B lim𝑠↑𝑡 𝑓 (𝑠) exists, and the right limit
𝑓 (𝑡+) B lim𝑠↓𝑡 𝑓 (𝑠) (exists and) is equal to 𝑓 (𝑡).
1. Show that all cumulative distribution functions are càdlàg functions.
2. Show that an increasing, càdlàg function 𝐹 with limit 0 at −∞ and limit 1 at ∞

is a cumulative distribution function.
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Chapter 3
Independence

The notion of independence is fundamental and proper to probability theory. Our
focus now shifts drastically from the previous chapter, since the study of indepen-
dence is probably the principle argument against quotes of type “probability theory
is just integration theory”. To cite Durrett,

“Measure theory ends and probability begins with the definition of independence.”

3.1 Independence of events

Let us start by the simpliest example of independence.

Definition 22 (Independence of two events). Let (Ω, F , P) be a probability space.
A pair of events 𝐴 and 𝐵 on this space are called independent if

P [𝐴 ∩ 𝐵] = P [𝐴] P [𝐵] .

In Probability II, we will define the conditional probability of the event 𝐴 knowing
𝐵 as P[𝐴|𝐵] B P[𝐴∩ 𝐵]/P[𝐵], when P[𝐵] > 0. So 𝐴 and 𝐵 are independent if and
only if P[𝐴|𝐵] = P[𝐴], or that “conditioning on 𝐵 does not change the probability
of 𝐴”.

Remark 37. We cannot condition on an event 𝐵 of probability 0, but there are certain
ways of getting past this in more advanced course.

Remark 38. Notice that P[𝐴|𝐵] = P[𝐵 |𝐴]P[𝐴]
P[𝐵] : this somewhat trivial observation is

known as Bayes’ theorem.

Remark 39. If the event 𝐴 is independent of itself, then P[𝐴] ∈ {0, 1}. This is an
example of a zero-one law that we will study in more detail later.

Remark 40 (Dynkin’s lemma). This is an elementary example (arguably the most
elementary one) that showcases the use of Dynkin’s lemma. Indeed, consider two
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events 𝐴 and 𝐵, and suppose we know how to measure P[𝐴] and P[𝐵]. Now, since
𝐴 ∩ 𝐵 is in the 𝜎-algebra generated by 𝐴 and 𝐵, can we determine P[𝐴 ∩ 𝐵]? If we
can always determine it, then the definition of independence above has no meaning
at all, so the answer must be no. But once the probability of the intersection P[𝐴∩𝐵]
is specified, we know how to calculate any probability in 𝜎(𝐴, 𝐵).

The independence of more than two events is stronger than just pairwise inde-
pendence. Indeed, the independence property assigns the probability measure on all
intersections of different numbers of events.

Definition 23 (Independence of finitely many events). We call 𝑛 events 𝐴1, . . . , 𝐴𝑛

independent if for any subset { 𝑗1, . . . , 𝑗𝑝} ⊂ {1, . . . , 𝑛},

P

[
𝑝⋂

𝑘=1
𝐴 𝑗𝑘

]
=

𝑝∏
𝑘=1
P

[
𝐴 𝑗𝑘

]
.

Notice that we require the factorization property on all subsets of indices.

Remark 41. Consider two independent fair coin tosses 𝑋1 and 𝑋2 and three events
𝐴1 = {𝑋1 = 1}, 𝐴2 = {𝑋2 = 1}, 𝐴3 = {𝑋1 = 𝑋2}. These events are pairwise
independent (check the definition) but not independent as a whole (e.g. knowing 𝐴1
and 𝐴2 happen implies that 𝐴3 happens).

One can rewrite the condition before slightly differently:

Proposition 4 (Independence of finitely many events bis). The 𝑛 events 𝐴1, . . . , 𝐴𝑛

are independent if and only if for all 𝐵 𝑗 ∈ 𝜎(𝐴 𝑗 ) = {∅, 𝐴 𝑗 , (𝐴 𝑗 )𝑐 ,Ω},

P


𝑛⋂
𝑗=1
𝐵 𝑗

 =
𝑛∏
𝑗=1
P

[
𝐵 𝑗

]
.

The proof is a formal manipulation on sets and is omitted. Notice that the product
above is indexed from 1 to 𝑛, but since some 𝐵 𝑗 can be Ω, it is still a requirement on
all products indexed by subsets { 𝑗1, . . . , 𝑗𝑝} of {1, . . . , 𝑛}.

3.2 Independence of sigma-algebras and random variables: finite
case

We now prepare for the definition of 𝑛 independent random variables 𝑋1, . . . , 𝑋𝑛.
Intuitively, we want to say the knowing the outcome of some of {𝑋1, . . . , 𝑋𝑛} does
not give information on other random variables. The “independence of information”
is encoded by the 𝜎-algebras.
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Definition 24 (Independence of finitely many 𝜎-algebras). Let B1 . . . ,B𝑛 be 𝑛
sub-𝜎-algebras of the same 𝜎-algebra F . We say that B1 . . . ,B𝑛 are independent if
for all (𝐵1, . . . , 𝐵𝑛) ∈ B1 × · · · × B𝑛, we have

P


𝑛⋂
𝑗=1
𝐵 𝑗

 =
𝑛∏
𝑗=1
P

[
𝐵 𝑗

]
.

Remark 42. Notice that B1 × · · · × B𝑛 is not the product 𝜎-algebra B1 ⊗ · · · ⊗ B𝑛!

The independence of random variables is then the independence of the 𝜎-algebras
that each of them generates. The technical assumption here is that the latter all belong
to the same 𝜎-algebra, so the random variables are defined on the same probability
space.

Definition 25 (Independence of finitely many random variables). Let 𝑋1, . . . , 𝑋𝑛

be 𝑛 random variables defined on the same probability space with 𝑋 𝑗 : (Ω, F , P) →
(𝐸 𝑗 , E 𝑗 ). Then {𝑋1, . . . , 𝑋𝑛} are independent if and only if {𝜎(𝑋1), . . . , 𝜎(𝑋𝑛)}
are independent. In fact, this is equivalent to saying that, for all (𝐵1, . . . , 𝐵𝑛) ∈
E1 × · · · × E𝑛,

P[𝑋1 ∈ 𝐵1, . . . , 𝑋𝑛 ∈ 𝐵𝑛] =
𝑛∏
𝑗=1
P

[
𝑋 𝑗 ∈ 𝐵 𝑗

]
.

The last equivalence follows from recalling that 𝜎(𝑋 𝑗 ) = {𝑋−1
𝑗 (𝐵), 𝐵 ∈ E 𝑗 }.

The following factorization property is essential in applications.

Proposition 5 (Joint law of independent random variables). Let 𝑋1, . . . , 𝑋𝑛 be
𝑛 random variables defined on the same probability space with different sample
spaces, i.e. 𝑋 𝑗 : (Ω, F , P) → (𝐸 𝑗 , E 𝑗 ). Then (𝑋1, . . . , 𝑋𝑛) is a random variable
from (Ω, F , P) to (𝐸1 × · · · × 𝐸𝑛, E1 × · · · × E𝑛). The variables 𝑋1, . . . , 𝑋𝑛 are
independent if and only if

P(𝑋1 ,...,𝑋𝑛) = P𝑋1 ⊗ · · · ⊗ P𝑋𝑛 .

Furthermore, in this case, we have

E


𝑛∏
𝑗=1

𝑓 𝑗 (𝑋 𝑗 )
 =

𝑛∏
𝑗=1
E[ 𝑓 𝑗 (𝑋 𝑗 )]

for any 𝑛-tuple of positive measurable functions 𝑓 𝑗 : (𝐸 𝑗 , E 𝑗 ) → (R≥0,B(R≥0)).

Proof. Recall that a measure 𝜇 on the product space (𝐸1 × · · · × 𝐸𝑛, E1 ⊗ · · · ⊗ E𝑛)
is completely determined by the collection 𝜇(𝐵1 × · · · × 𝐵𝑛) for all 𝐵1 × · · · × 𝐵𝑛 ∈
E1×· · ·×E𝑛: this is a consequence of Dynkin’s lemma (this is actually how the product
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measure is defined). Therefore, we only need to show P(𝑋1 ,...,𝑋𝑛) = P𝑋1 ⊗ · · · ⊗ P𝑋𝑛

on elements of type 𝐵1 × · · · × 𝐵𝑛 ∈ E1 × · · · × E𝑛.
By definition,

P(𝑋1 ,...,𝑋𝑛) (𝐵1 × · · · × 𝐵𝑛) = P[{𝑋1 ∈ 𝐵1} ∩ · · · ∩ {𝑋𝑛 ∈ 𝐵𝑛}],

P𝑋1 ⊗ · · · ⊗ P𝑋𝑛 (𝐵1 × · · · × 𝐵𝑛) = P[𝑋1 ∈ 𝐵1] × · · · × P[𝑋𝑛 ∈ 𝐵𝑛],
but they are equal by the definition of independence above.

We apply Fubini-Tonelli’s theorem (i.e. Fubini for positive measurable functions)
for the rest. First write

E


𝑛∏
𝑗=1

𝑓 𝑗 (𝑋 𝑗 )
 =

∫
𝐸1×···×𝐸𝑛

𝑛∏
𝑗=1

𝑓 𝑗 (𝑥 𝑗 )P(𝑋1 ,...,𝑋𝑛) (𝑑𝑥1, . . . , 𝑑𝑥𝑛).

Since P(𝑋1 ,...,𝑋𝑛) = P𝑋1 ⊗ · · · ⊗ P𝑋𝑛 , Fubini’s theorem allows us to factorize the
integral into∫

𝐸1

. . .
©«
∫
𝐸𝑛−1

©«
∫
𝐸𝑛

𝑛∏
𝑗=1

𝑓 𝑗 (𝑥 𝑗 )P(𝑑𝑥𝑛)
ª®¬P(𝑑𝑥𝑛−1)

ª®¬ . . . P(𝑑𝑥1).

Succesively integrating, this is equal to
𝑛∏
𝑗=1
E[ 𝑓 𝑗 (𝑋 𝑗 )].

The moral here is “independence means multiply”. Notice that if the 𝑓 𝑗 :s are not
positive, the factorization still holds if all 𝑓 𝑗 :s are in 𝐿1 by dominated convergence. In
particular, if 𝑋1, . . . , 𝑋𝑛 are independent random variables in 𝐿1, then their product
is also in 𝐿1 and

E[𝑋1 × · · · × 𝑋𝑛] = E[𝑋1] × · · · × E[𝑋𝑛] .

This is a very strong property! Indeed, it is not true that 𝐿1 is stable under product.

3.3 Independence of real random variables: finite case

We specify the above discussions to the case of real random variables. It is important
to note that

Lemma 6. For all 𝑑 ≥ 1, B(R𝑑) = B(R)⊗𝑑 .

Proof. Admitted (see Section 8.5 of [Williams]).

We will be systematically using B(R)⊗𝑑 from now on: a generating 𝜋-system for
this 𝜎-algebra is {∏𝑑

𝑗=1 (−∞, 𝑎 𝑗 ]} (𝑎1 ,...,𝑎𝑑) ∈R𝑑 . A random vector (𝑋1, . . . , 𝑋𝑛) ∈ R𝑛
is formed by 𝑛 real random variables 𝑋1, . . . , 𝑋𝑛: its law P(𝑋1 ,...,𝑋𝑛) defined on
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(R𝑛,B(R)⊗𝑛) is specified by the data on the above generating 𝜋-system. When
P(𝑋1 ,...,𝑋𝑛) = 𝑝(𝑥1, . . . , 𝑥𝑛)𝑑𝑥1 . . . 𝑑𝑥𝑛, i.e. absolutely continuous with respect to the
Lebesgue measure on R𝑛, we say that it has density 𝑝(𝑥1, . . . , 𝑥𝑛).
Proposition 6 (Joint density and independence). Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 real random
variables.

1. Suppose that 𝑋1, . . . , 𝑋𝑛 are absolutely continuous, with respective density func-
tion 𝑝 𝑗 . Then the law of the random vector (𝑋1, . . . , 𝑋𝑛) has density

𝑝(𝑥1, . . . , 𝑥𝑛) =
∏
𝑗

𝑝 𝑗 (𝑥 𝑗 ).

2. Suppose that the law of the random vector (𝑋1, . . . , 𝑋𝑛) has density that can be
written as

𝑝(𝑥1, . . . , 𝑥𝑛) =
∏
𝑗

𝑞 𝑗 (𝑥 𝑗 ),

with positive Borel-measurable functions 𝑞 𝑗 . Then 𝑋1, . . . , 𝑋𝑛 are independent,
and for each 1 ≤ 𝑗 ≤ 𝑛, the law of 𝑋 𝑗 has density 𝑝 𝑗 = 𝐶 𝑗𝑞 𝑗 with constant
𝐶 𝑗 > 0.

In short, the independence of real random variables with density can be translated
into a factorization property.
Proof. The first part is a direct consequence of the factorization propery in the
previous proposition. For the second part, we can use Fubini-Tonelli to calculate the
density of 𝑋 𝑗 as

𝑝 𝑗 (𝑥 𝑗 ) =
∫
R𝑛−1

𝑝(𝑥1, . . . , 𝑥𝑛)𝑑𝑥1 . . . 𝑑𝑥 𝑗−1𝑑𝑥 𝑗+1𝑑𝑥𝑛

where we integrate over all variables but omit 𝑑𝑥 𝑗 .
By assumption, 𝑝(𝑥1, . . . , 𝑥𝑛) factorizes into products of 𝑞 𝑗 (𝑥 𝑗 ), this is∫

R𝑛−1

𝑛∏
𝑗=1

𝑞 𝑗 (𝑥 𝑗 )𝑑𝑥1 . . . 𝑑𝑥 𝑗−1𝑑𝑥 𝑗+1𝑑𝑥𝑛 =

(∏
𝑚≠ 𝑗

𝐾𝑚

)
𝑞 𝑗 (𝑥 𝑗 )

with 𝐾𝑚 B
∫
R
𝑝𝑚 (𝑥𝑚)𝑑𝑥𝑚. As 𝑝(𝑥1, . . . , 𝑥𝑛) is a probability density function,∏𝑛

𝑚=1 𝐾𝑚 = 1, and 𝐶 𝑗 B
∏

𝑚≠ 𝑗 𝐾𝑚 ≠ 0. This finishes the proof, since now
P(𝑋1 ,...,𝑋𝑛) = P𝑋1 ⊗ · · · ⊗ P𝑋𝑛 .

Remark 43. If 𝑋1, 𝑋2 are independent and in 𝐿2, then their covariance cov(𝑋1, 𝑋2) =
E[𝑋1𝑋2] − E[𝑋1]E[𝑋2] is 0. The converse statement is very wrong!

Next we record a more general consequence of independence of real random
variables. This proposition can also serve as mean to shown independence between
random variables.
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Proposition 7 (Practical criteria for independence). Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 real
random variables. There is equivalence between:

1. 𝑋1, . . . , 𝑋𝑛 are independent.
2. For all 𝑎1, . . . , 𝑎𝑛 ∈ R, P[𝑋1 ≤ 𝑎1, . . . , 𝑋𝑛 ≤ 𝑎𝑛] =

∏𝑛
𝑗=1 P[𝑋 𝑗 ≤ 𝑎 𝑗 ].

3. If 𝑓1, . . . , 𝑓𝑛 are continuous, compact supported functions from R to R≥0, then
E[∏𝑛

𝑗=1 𝑓 𝑗 (𝑋 𝑗 )] =
∏𝑛

𝑗=1 E[ 𝑓 𝑗 (𝑋 𝑗 )].
4. The characteristic function of 𝑋 = (𝑋1, . . . , 𝑋𝑛) isΦ𝑋 (𝜉1, . . . , 𝜉𝑛) =

∏𝑛
𝑗=1 Φ𝑋 𝑗 (𝜉 𝑗 ).

Proof. We have seen (1) =⇒ (2) =⇒ (3) =⇒ (4). For (4) =⇒ (1), one
uses the injectivity of the Fourier transform on the space of probability measures: a
rigorous proof will be provided later in this course.

In practise, the third item above is what one uses most about independent random
variables, but the fourth item is also helpful when the characteristic functions are
easy to calculate.

Remark 44. The quantity in the second item above, as a generalized cumulative
distribution function, characterizes the law of (𝑋1, . . . , 𝑋𝑛). The quantity in the
fourth item also chracterizes the law of (𝑋1, . . . , 𝑋𝑛) (notice that this is a higher
dimensional version of Fourier transform, and only knowning the diagonal values
Φ𝑋 (𝜉, . . . , 𝜉) for all 𝜉 ∈ R) is not enough. Together, they provide useful checks of
independence.

3.4 Sum of two independent real random variables

Sums of independent random variables will be an important subject that occupy the
last part of this course. We now study the sum of two independent random variables.

Proposition 8 (Characteristic function and sum of independent random vari-
ables). Let 𝑋 and 𝑌 be two independent real random variables. Then the character-
istic function of 𝑋 + 𝑌 is Φ𝑋+𝑌 (𝜉) = Φ𝑋 (𝜉)Φ𝑋 (𝜉).

Proof. This follows fromΦ𝑋+𝑌 (𝜉) = E[𝑒𝑖 𝜉 (𝑋+𝑌 ) ] = E[𝑒𝑖 𝜉𝑋 ]E[𝑒𝑖 𝜉𝑌 ] = Φ𝑋 (𝜉)Φ𝑌 (𝜉),
where the factorization is justified by the independence between 𝑋 and 𝑌 .

Given two probability measures 𝜇 and 𝜈 on R, recall that we can define their
convolution measure 𝜇 ∗ 𝜈 on R such that for all measurable functions 𝜑 : R→ R≥0,∫

R
𝜑(𝑧)𝜇 ∗ 𝜈(𝑑𝑧) =

∫
R

∫
R
𝜑(𝑥 + 𝑦)𝜇(𝑑𝑥)𝜈(𝑑𝑦).

Proposition 9 (Convolution and sum of independent random variables). Let 𝑋
and 𝑌 be two independent real random variables. Then the law of 𝑋 +𝑌 is 𝑃𝑋 ∗ 𝑃𝑌 .

24



In particular, if 𝑋 and 𝑌 are continuous with density functions respectively 𝑝𝑋 and
𝑝𝑌 , then 𝑋 + 𝑌 is continuous and has density function 𝑝𝑋 ∗ 𝑝𝑌 (the last ∗ is stricto
sensu the convolution of functions instead of measures).

Proof. To calculate the law of 𝑋+𝑌 , we studyE[ 𝑓 (𝑋+𝑌 )] for all positive measurable
functions 𝑓 . Recall that, by independence, P(𝑋,𝑌 ) (𝑑𝑥𝑑𝑦) = P𝑋 (𝑑𝑥)P𝑌 (𝑑𝑦). We have

E[ 𝑓 (𝑋 + 𝑌 )] =
∫
R2
𝑓 (𝑥 + 𝑦)P(𝑋,𝑌 ) (𝑑𝑥𝑑𝑦) =

∫
R2
𝑓 (𝑥 + 𝑦)P𝑋 (𝑑𝑥)P𝑌 (𝑑𝑦),

but the last expression is
∫
R2 𝑓 (𝑧)P𝑋 ∗ P𝑌 (𝑑𝑧) by definition.

In the case where P𝑋 (𝑑𝑥) = 𝑝𝑋 (𝑥)𝑑𝑥 and P𝑌 (𝑑𝑦) = 𝑝𝑌 (𝑦)𝑑𝑦, the last expression
above is∫

R2
𝑓 (𝑥 + 𝑦)𝑝𝑋 (𝑥)𝑝𝑌 (𝑦)𝑑𝑥𝑑𝑦 =

∫
R
𝑓 (𝑧)

(∫
R
𝑝𝑋 (𝑥)𝑝𝑌 (𝑧 − 𝑥)𝑑𝑥

)
𝑑𝑧

where we used the change of variables 𝑧 = 𝑥 + 𝑦. We recognize the convolution of
two 𝐿1 functions in the parenthesis, namely (𝑝𝑋 ∗ 𝑝𝑌 ) (𝑧).

Example 5. The sum of two independent uniform distributions U([0, 1]) uniform
has density 𝑝(𝑥) = (1 − |𝑥 − 1|)+.
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Chapter 4
Sequence of infinitely many random variables

We often want to study an infinite sequence of random variables and say something
about its long-term behavior. It would be great interest to be able to predict that
something is almost surely going to happen in the future. We give two important
results of this type: Borel-Cantelli’s lemma(s) and Kolomogorov’s zero-one law.

4.1 Independence of an infinite family of random variables

Given 𝑛 independent random variables 𝑋1, . . . , 𝑋𝑛, one can separate them into two
collections 𝑌1 = (𝑋1, . . . , 𝑋𝑝) and 𝑌2 = (𝑋𝑝+1, . . . , 𝑋𝑛). It is intuitively clear that 𝑌1
and 𝑌2 should be independent (as random vectors), but the justification takes some
work. First, we need a technical measure theory lemma.

Lemma 7 (Independence of collections and generated 𝜎-algebras). We say that
a collection of sets (not-necessary 𝜎-algebras) A1, . . . ,A𝑛, each containing Ω, is
independent if for any 𝐴 𝑗 ∈ A 𝑗 ,

P


𝑛⋂
𝑗=1

𝐴 𝑗

 =
𝑛∏
𝑗=1
P[𝐴 𝑗 ] .

If furthermore, each A 𝑗 is a 𝜋-system, i.e. stable by finite intersection, then they
generate independent 𝜎-algebras 𝜎(𝐴1), . . . , 𝜎(𝐴𝑛).

Proof. As you might suspect, the proof relies on Dynkin’s lemma. We follow
Theorem 2.1.7 in [Durrett]: it suffices to prove, with the notations above, that
𝜎(𝐴1), 𝐴2, . . . , 𝐴𝑛 are independent, and then finish the proof by induction.

For this, notice that {𝐴 ∈ F ; 𝐴 independent of 𝐴2, . . . , 𝐴𝑛} is a 𝜆-system that
contains 𝐴1. Since 𝐴1 is a 𝜋-system, Dynkin’s lemma shows that 𝜎(𝐴1) is contained
in the above 𝜆-system, so that 𝜎(𝐴1) is independent of 𝐴2, . . . , 𝐴𝑛.

The following corollary is very practical.
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Corollary 1 (Independence by blocks). LetB1, . . . ,B𝑛 be independent𝜎-algebras.
Let 0 = 𝑛0 < 𝑛1 < · · · < 𝑛𝑝 = 𝑛 and divide them into blocks with different indices:
D1 = 𝜎(B1, . . . ,B𝑛1 ), D2 = 𝜎(B𝑛1+1, . . . ,B𝑛2 ), . . . , D𝑝 = 𝜎(B𝑛𝑝−1+1, . . . ,B𝑛).
Then the 𝜎-algebras D1, . . . ,D𝑝 are independent.

In particular, if 𝑋1, . . . , 𝑋𝑛 are independent random variables, the random vectors
𝑌1 = (𝑋1, . . . , 𝑋𝑝) and 𝑌2 = (𝑋𝑝+1, . . . , 𝑋𝑛) are independent.

Proof. Exercise (use the previous lemma). See also Theorem 2.1.9 of [Durrett].

Remark 45. Given three independent random variables 𝑋1, 𝑋2, 𝑋3, the random vari-
ables exp(𝑋1) and 𝑋2 · 𝑋3 are independent, since they are measurable functions of
𝑋1 and (𝑋2, 𝑋3) which are independent.

We generalize the above discussion to define independence of an infinite family
of random variables {𝑋 𝑗 } 𝑗∈Z>0 . As usual, start with the 𝜎-algebras:

Definition 26 (Independence of an infinite family of 𝜎-algebras). Let (B 𝑗 ) 𝑗∈𝐽 be
an (possibly uncountably) infinite family of 𝜎-algebras of F . We say that this family
of 𝜎-algebras is independent if and only if every finite collection (B 𝑗1 , . . . ,B 𝑗𝑝 ) is
independent (as a finite family of 𝜎-algebras defined in the previous chapter).

Definition 27 (Independence of an infinite family of random variables). Let
𝑋1, 𝑋2, . . . be an infinite family of random variables defines on the same proba-
bility space. We say that this family of random variables is independent if and only
if their 𝜎-algebras are independent (as in the previous definition).

Remark 46. Another way of formulating the previous definition is to say that an
infinite family of random variables is independent if and only if every finite collection
of this family of random variables is independent.

Example 6 (Lebesgue’s construction of independent coin tosses). Consider 𝑋 ∼
U[0, 1] and write it in the dyadic bases, 𝑋 (𝜔) =

∑
𝑗≥1

𝜖 𝑗 (𝜔)2− 𝑗 . Then (𝜖 𝑗 ) 𝑗≥1 is

an infinite i.i.d. sequence of random fair coin tosses with value in {0, 1}. This
construction does not use Kolmogorov’s extension theorem.

4.2 Infinite sequences of events

To start our discussion, we need to review some materials on infinite sequences. Not
only of numbers, but of sets in general.

Definition 28 (Limits of sets). Recall that a 𝜎-algebra 𝑋 is closed under countable
unions and intersections. Let 𝐴1, . . . , 𝐴𝑛, . . . be a sequence of sets in 𝑋 . Then the
following sets are also in the 𝜎-algebra 𝑋:
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1. Limit supremum: lim sup
𝑛

𝐴𝑛 =
∞⋂
𝑛=1

( ∞⋃
𝑚=𝑛

𝐴𝑚

)
.

2. Limit infimum: lim inf
𝑛

𝐴𝑛 =
∞⋃
𝑛=1

( ∞⋂
𝑚=𝑛

𝐴𝑚

)
.

The difference with the more familiar lim sup and lim inf of sequences is that, the
inclusion of sets is a partial order, while the comparaison of real numbers is a total
order. The above quantities control the fluctuation of the sequence sets in the limits.

Remark 47. It is easy to see that lim inf𝑛 𝐴𝑛 is always smaller than lim sup𝑛 𝐴𝑛 (in
the sense of inclusion). If lim inf𝑛 𝐴𝑛 = lim sup𝑛 𝐴𝑛, then we can define lim𝑛 𝐴𝑛 as
this common limit set.

An important remark is that, by continuity of probability measures from below and
from above, we have

P

[
lim sup
𝑛→∞

𝐴𝑛

]
= lim

𝑛→∞
↓ P

[
∪∞
𝑚=𝑛𝐴𝑚

]
,

and similarly for lim inf (this one is used less often, and so is left as an exercise).

To explain the definition with common words, an element 𝑥 is in the set
lim sup𝑛 𝐴𝑛 if and only if for arbitrarily large 𝑛0, 𝑥 appears in some set 𝐴𝑚 with
𝑚 ≥ 𝑛0. A more commonly used definition in probability is:

Proposition 10 (“Infinitely often”). Let 𝐸1, . . . , 𝐸𝑛, . . . be a sequence of events in
some probability space (Ω, F , P). Then lim sup𝑛 𝐸𝑛 is the set of outcomes that occur
infinitely many times with the sequence 𝐸𝑛.

One can write i.o. for infinitely often. You should have already encountered this for
deterministic sequences, but this notion is of particular interest for probabilists.

Example 7. As a deterministic example, prime numbers appear infinitely often in the
sequence of natural numbers. Actually, there are very nice probabilistic models of
prime numbers, starting with the so-called Cramér’s model. Google it!

We now extend the “grouping independent random variables by blocks” property
to the infinite case.

Proposition 11 (Independence of an infinite family of random variables). Let
𝑋1, . . . , 𝑋𝑛, . . . be independent random variables. Then the random vectors 𝑌1 =
(𝑋1, . . . , 𝑋𝑝) and 𝑌2 = (𝑋𝑝+1, 𝑋𝑝+2, . . . ) are independent.

Proof. We should show that B1 = 𝜎(𝑋1, . . . , 𝑋𝑝) and B2 = 𝜎(𝑋𝑝+1, 𝑋𝑝+2, . . . ) are
independent 𝜎-algebras. Notice that B2 is generated by D 𝑗 = 𝜎(𝑋𝑝+1, . . . , 𝑋𝑝+ 𝑗 ),
each of them independent of B1. Furthermore, ∪ 𝑗≥1D 𝑗 is a 𝜋-system that contains
Ω. Applying a lemma above shows that B2 = 𝜎(∪ 𝑗≥1D 𝑗 ) is also independent of B1.
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4.3 Borel-Cantelli lemma(s)

There are two versions of Borel-Cantelli lemma for the lim sup of an infinite sequence
of events.

Theorem 5 (First Borel-Cantelli lemma). Let (𝐴 𝑗 ) 𝑗≥1 be a sequence of events in
(Ω, F , P). If

∑
𝑗≥1 P[𝐴 𝑗 ] < ∞, then P[lim sup 𝑗 𝐴 𝑗 ] = 0, i.e. the probability that

infinitely many of 𝐴 𝑗 occur is 0.

Proof. It is enough to show that lim 𝑗0→∞ P[∪ 𝑗≥ 𝑗0𝐴 𝑗 ] = 0. By union bound, it
suffices if

∑
𝑗≥ 𝑗0 P[𝐴 𝑗 ] → 0 as 𝑗0 → ∞. But this is true since the series

∑
𝑗≥1 P[𝐴 𝑗 ]

converges.

Notice that the following lemma supposes independence while the previous one
does not.

Theorem 6 (Second Borel-Cantelli lemma). Let (𝐴 𝑗 ) 𝑗≥1 be a sequence of inde-
pendent events in (Ω, F , P). If

∑
𝑗≥1 P[𝐴 𝑗 ] = ∞, then P[lim sup 𝑗 𝐴 𝑗 ] = 1, i.e. the

probability that infinitely many of 𝐴 𝑗 occur is 1.

Proof. To show that P[lim sup 𝑗 𝐴 𝑗 ] = 1, we should show that P[∪ 𝑗≥𝑚𝐴 𝑗 ] = 1
for all 𝑚 ≥ 1. To estimate the latter, we pass to the complement and show
that P[∩ 𝑗≥𝑚 (𝐴 𝑗 )𝑐] = 0 for all 𝑚 ≥ 1. Using independence of 𝐴 𝑗 , we have
P[∩ 𝑗≥𝑚 (𝐴 𝑗 )𝑐] =

∏
𝑗≥𝑚 P[(𝐴 𝑗 )𝑐] =

∏
𝑗≥𝑚 (1 − P[𝐴 𝑗 ]).

Since
∑

𝑗≥1 P[𝐴 𝑗 ] = ∞, we also have
∑

𝑗≥𝑚 P[𝐴 𝑗 ] = ∞, and since 1 − P[𝐴 𝑗 ] ≤
𝑒−P[𝐴 𝑗 ] , we get

∏
𝑗≥𝑚 (1 − P[𝐴 𝑗 ]) ≤ 𝑒−

∑
𝑗≥𝑚 P[𝐴 𝑗 ] = 0. This finishes the proof.

Remark 48. The independence assumption in the second Borel-Cantelli lemma can-
not be dropped: consider the extreme case where the sequence is completely corre-
lated, i.e. 𝑋𝑖 = 𝑋 𝑗 for all 𝑖 ≠ 𝑗 . One verifies that the sequence of events 𝐴 𝑗 ≡ 𝐴
with 0 < P[𝐴] < 1 happens infinitely often with probability P[𝐴] < 1, but∑

𝑗≥1 P[𝐴 𝑗 ] = ∞.

4.4 Kolmogorov’s zero-one law

Suppose that F is the 𝜎-algebra generated by an infinite sequence of random vari-
ables {𝑋 𝑗 } 𝑗∈Z>0 . We call 𝐴 ∈ F a tail event (or sometimes asymptotic event) if it is
independent of each finite subset of the random variables {𝑋 𝑗 } 𝑗>0. In other words:

Definition 29 (Tail𝜎-algebra). Consider a sequence of random variables {𝑋 𝑗 } 𝑗∈Z>0

and let F𝑛 = 𝜎(𝑋𝑛, 𝑋𝑛+1, . . . ). The tail 𝜎-algebra, denoted by T , is the intersection
T B ∩𝑛≥1F𝑛.

The idea is that, F𝑛 contains the “information after time 𝑛”, and T is the “information
in the remote future”. Changing the value of a finite number of 𝑋 𝑗 does not affect
the outcome of a tail event 𝐴 ∈ T .
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Remark 49. For an infinite sequence of events 𝐸𝑛, the event “𝐸𝑛 happens infinitely
often” is a tail event. Let us verify this properly with the definition. Recall that
lim sup𝑛 𝐴𝑛 = ∩∞

𝑛=1
(
∪∞
𝑚=𝑛𝐴𝑚

)
. Now, ∪∞

𝑚=𝑛𝐴𝑚 ∈ F𝑛, and lim sup𝑛 𝐴𝑛 ∈ ∩∞
𝑛=1F𝑛 =

T is indeed a tail event.

Remark 50. The event “{𝑋 𝑗 } 𝑗∈Z>0 is bounded” is a tail event. Intuitively, this event
does not depend on the realizations of finitely many terms of {𝑋 𝑗 } 𝑗≥1.

Tail events appear in the study of boundness, convergence, recurrence etc., where
the answer to the question is independent of finitely many entries. The remarkable
property about a tail event is:

Theorem 7 (Kolmogorov’s zero-one law). Let 𝑋1, 𝑋2, . . . be independent random
variables and T its tail 𝜎-algebra. Then any tail event 𝐴 ∈ T has probability either
0 or 1.

Notice that we assume independence of the random sequence.

Proof. The (somewhat surprising) idea of that such a tail event 𝐴 ∈ T is independent
of itself ! From this, you get P[𝐴] = P[𝐴 ∩ 𝐴] = P[𝐴]2, so that 𝑃[𝐴] ∈ {0, 1}.

We have already seen that, for all 𝑘 ≥ 1, the 𝜎-algebras 𝜎(𝑋1, . . . , 𝑋𝑘 ) and
𝜎(𝑋𝑘+1, 𝑋𝑘+2, . . . ) are independent. We will generalize the argument to show that
𝜎(𝑋1, 𝑋2, . . . ) and T are independent. Already, 𝜎(𝑋1, . . . , 𝑋𝑘 ) and T are indepen-
dent since T ⊂ 𝜎(𝑋𝑘+1, 𝑋𝑘+2, . . . ). But ∪𝑘≥1𝜎(𝑋1 . . . , 𝑋𝑘 ) is a 𝜋-system (and it is
equal to𝜎(𝑋1, 𝑋2, . . . ) that containsΩ), so by the same argument as in the beginning
of this chapter, 𝜎(𝑋1, 𝑋2, . . . ) is independent of T (strange, isn’t it!).

Now if 𝐴 ∈ T , as 𝐴 is also in 𝜎(𝑋1, 𝑋2, . . . ), 𝐴 is independent of itself.

Remark 51. As a 𝜎-algebra, T is independent of T .

Remark 52. Let 𝑋1, 𝑋2, . . . be independent random variables. Show that if the prob-
ability that the sequence (𝑋1, 𝑋2, . . . ) converges is greater than 10−100, then it con-
verges almost surely. Indeed, the event “{𝑋𝑛}𝑛≥1 converges” is in the tail T , but its
probability cannot be 0 by assumption, so its probability must be 1 by Kolmogorov’s
zero-one law.
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Exercise set II

Exercises marked with ! are important and those with ★ are difficult.

Exercise 8 (Sum of two independent Gaussian random variables). Consider two
independent Gaussian random variables 𝑋1 ∼ N(𝜇1, 𝜎

2
1 ) and 𝑋2 ∼ N(𝜇2, 𝜎

2
2 ).

Show that 𝑋1 + 𝑋2 is distributed as N(𝜇1 + 𝜇2, 𝜎
2
1 + 𝜎2

2 ).

Exercise 9 (! – Gaussian vector or not, that is the question). A random vector
(𝑋1, 𝑋2) ∈ R2 is called a Gaussian vector if every linear combination of {𝑋1, 𝑋2} is
a Gaussian random variable.

1. Suppose that (𝑋1, 𝑋2) is a Gaussian vector with E[𝑋1] = E[𝑋2] = 0 (we say that
𝑋1, 𝑋2 are centered). Does E[𝑋1 ·𝑋2] = 0 imply that 𝑋1 and 𝑋2 are independent?

2. Answer the same question above when (𝑋1, 𝑋2) is not necessarily a Gaussian
vector (but each distributed as a centered Gaussian). Hint: you can e.g. “change
the sign of a Gaussian with a coin toss”.

3. Show that if (𝑋1, 𝑋2) is a centered Gaussian vector (i.e. Gaussian vector with
0-mean components), its law is completely characterized by the 2 × 2 matrix
𝐴 = (𝑎𝑖 𝑗 )𝑖, 𝑗∈{1,2} with 𝑎𝑖 𝑗 = E[𝑋𝑖 · 𝑋 𝑗 ]. Hint: this is a Hilbert space problem.

Exercise 10 (Minimum of independent exponential random variables). Take two
independent random variables 𝑋1 ∼ Exp(𝜆1) and 𝑋2 ∼ Exp(𝜆2) with 𝜆1, 𝜆2 > 0.
Consider 𝑋 = min(𝑋1, 𝑋2).

1. Show that 𝑋 is an exponential random variable. Calculate its parameter.
2. Generalize your answer to the minimum of 𝑛 independent exponential distribu-

tions.
3. Does the question work with the maximum?
4. Use the information above to calculate the mean of max(𝑋1, 𝑋2).

Exercise 11 (Maximum of Gaussian random variables). Take a sequence of 𝑛
standard normal random variables 𝑋1, . . . , 𝑋𝑛, each distributed as 𝑋 ∼ N(0, 1).
Denote by 𝑍 = max(𝑋1, . . . , 𝑋𝑛). We want to estimate the size of E[𝑍].
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1. Using Markov inequality to show that P[𝑋 > 𝑎] ≤ exp(−𝑎2/2) for any 𝑎 > 0.
Hint: consider E[𝑒𝛾𝑋 ].

2. Write E[𝑍] = 1
𝛽E[ln(𝑒𝛽𝑍 )]. Deduce that for all 𝛽 > 0,

E[𝑍] ≤ 1
𝛽
E

ln ©«
𝑛∑
𝑗=1
𝑒𝛽𝑋 𝑗 ª®¬

 .
3. Apply Jensen’s inequality, then optimize on 𝛽 to conclude that E[𝑍] ≤

√
2 ln 𝑛.

4. Did we assume the independence of (𝑋1, . . . , 𝑋𝑛) somewhere? What can you
say if we assume that they are independent (★)?

Exercise 12 (Factorization of planar Gaussian variable). Let 𝑈,𝑉 be indepen-
dent random variables with 𝑈 ∼ Exp(1) and 𝑉 ∼ U([0, 1]). Define (𝑋,𝑌 ) =
(
√
𝑈 cos(2𝜋𝑉),

√
𝑈 sin(2𝜋𝑉)).

1. Show that 𝑋,𝑌 are independent and identically distributed as N(0, 1/2). For
this, you can try to show that the density function of (𝑋,𝑌 ) factorizes.

2. Explain the title of this exercise.

Exercise 13 (Positive random series). Consider a sequence of independent positive
random variables𝑈1, . . . ,𝑈𝑛, . . . and investigate the series

∑∞
1 𝑈𝑛.

1. What are the possible values for P
[∑∞

1 𝑈𝑛 < ∞
]

using the zero-one law?
2. What can be said about the previous question if E

[∑∞
1 𝑈𝑛

]
< ∞?

3. Take𝑈𝑛 = 0 with probability 1−2−𝑛 and𝑈𝑛 = 2𝑛 with probability 2−𝑛. Calculate
E [𝑈𝑛], then E

[∑∞
1 𝑈𝑛

]
. However, use the Borel-Cantelli lemma to conclude

that
∑∞

1 𝑈𝑛 < ∞ almost surely.

[Kahane – Some Random Series of Functions (2nd ed.), p32]

Exercise 14 (Just for fun – a proof by game). Use a fair coin to prove the following
identity:

1
4
+ 1

8
+ 2

16
+ 3

32
+ 5

64
+ · · · = 1. (4.1)

where the numerators are given by the Fibonacci sequence.
Hint: consider the following game (for one player) with the diagram

Start −→ Nothing Happens −→ Go Back to Start −→ Finish

and the rules:

1. If you hit “Head”, advance two steps;
2. If you hit “Tail”, advance one step.

To be rigorous, you might want to show that the game stops with probability 1.
[Litchfield – Mathematics Magazine, Vol.67, No.4]
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Chapter 5
Convergence in law

The central limit theorem says that, in many cases, renormalized sum of independent
random variables “behaves like” a Gaussian random variable. To establish this result,
we should define properly what does “behaves like” mean in probability with the
definition of convergence in law, and we will study a simple proof with the use of
characteristic functions, i.e. Fourier transform of probability measures.

5.1 Convergence of probability measures

In this chapter, we work with probability measures, denoted as 𝜇 or P𝑋 on (R,B(R)),
the latter if it is induced by some real random variable 𝑋 . This is equivalent to
specifying the distribution function 𝐹𝑋 (𝑎) = P[𝑋 ≤ 𝑎] for 𝑎 ∈ R: recall also that a
distribution function is essentially characterized by its càdlàg property.

Let us already notice that different real random variables can induce the same law,
and in the following, we don’t specify the probability space of the random variable
if only the law of the latter is of interest: this is an abus of language that is allowed
only in this chapter.

Definition 30 (Weak convergence of distribution functions). Let {𝐹𝑛}𝑛≥1 and 𝐹
be distribution functions on R. We say that 𝐹𝑛 converges weakly towards 𝐹 if for all
𝑦 ∈ R continuous point of 𝐹, we have 𝐹𝑛 (𝑦) → 𝐹 (𝑦) as 𝑛→ ∞.

The above definition is often replaced by the following more practical one in
many applications. The easiest proof of these results is to go by the Skorokhod
representation theorem and uses the notion of almost sure convergence, that we
might come back to in the last chapter, time permitting.

Definition 31 (Weak convergence of probability measures). Let 𝜇1, 𝜇2, . . . and 𝜇
be probability measures onR. We say that {𝜇𝑛}𝑛≥1 converges weakly to 𝜇 if and only
if, for every bounded continuous function 𝑓 ∈ C𝑏 (R), we have

∫
R
𝑓 (𝑥)𝜇𝑛 (𝑑𝑥) →∫

R
𝑓 (𝑥)𝜇(𝑑𝑥) as 𝑛→ ∞.
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Definition 32 (Weak convergence of real random variables). Let 𝑋1, 𝑋2, . . . and
𝑋 be real random variables. We say that {𝑋𝑛}𝑛≥1 converges weakly to 𝑋 if and only if,
for every bounded continuous function 𝑓 ∈ C𝑏 (R), we have E[ 𝑓 (𝑋𝑛)] → E[ 𝑓 (𝑋)]
as 𝑛→ ∞.

Proof. See Theorem 3.2.9 of [Durrett].

We usually say in this case that the sequence of random variables {𝑋𝑛}𝑛≥1 converges
in law or in distribution towards the random variable 𝑋 , and denote this convergence
by

(d)→.

Remark 53. In the definition of the convergence in law, we do not require that the
random variables 𝑋𝑛 are defined on the same probability space. This is not the case
for the the convergence in probability or the almost sure convergence that we will
see in the coming weeks.

Remark 54. In the case of probability measures or random variables, the space of
test functions C𝑏 (R) can be replaced by C𝑐 (R), the space of compactly supported
continuous functions on R. The reason behind is because when the total mass 𝜇(R)
is fixed, the notion of weak convergence coincides with that of the so-called vague
convergence.

We now give some useful conditions for showing weak convergence of probability
measures (which we can avoid using in this course).

Theorem 8 (Continuous mapping theorem). Let 𝑔 : R → R be a measurable
function and 𝐷𝑔 the set of points 𝑥 ∈ R where 𝑔 is discontinuous. If 𝑋𝑛 converges in
law to 𝑋 and P[𝑋 ∈ 𝐷𝑔] = 0, then 𝑔(𝑋𝑛) converges in law to 𝑔(𝑋). Furthermore,
if 𝑔 is bounded, then E[𝑔(𝑋𝑛)] converges to E[𝑔(𝑋)].

Proof. See Theorem 3.2.10 of [Durrett].

The next theorem gives some equivalent ways of checking the weak convergence.

Theorem 9 (Portmanteau’s theorem). The following statements are equivalent:

1. The sequence of random variables {𝑋𝑛}𝑛≥1 converges in law to 𝑋;
2. For all open sets 𝐺, lim inf𝑛 P[𝑋𝑛 ∈ 𝐺] ≥ P[𝑋 ∈ 𝐺];
3. For all closed sets 𝐹, lim sup𝑛 P[𝑋𝑛 ∈ 𝐹] ≤ P[𝑋 ∈ 𝐹];
4. For all Borel sets 𝐴 with P[𝑋 ∈ 𝜕𝐴] = 0, lim𝑛 P[𝑋𝑛 ∈ 𝐴] = P[𝑋 ∈ 𝐴], where
𝜕𝐴 is the boundary of 𝐴.

Proof. See Theorem 3.2.11 of [Durrett].

Finally, it is useful to point out that the weak convergence of measures has a
topological definition:
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Theorem 10 (Lévy’s metric). The function

𝜌(𝐹, 𝐺) = inf{𝜖 ≤ 0 : 𝐹 (𝑥 − 𝜖) − 𝜖 ≤ 𝐺 (𝑥) ≤ 𝐹 (𝑥 + 𝜖) + 𝜖 for all 𝑥}

defines a metric on the space of distribution functions and 𝜌(𝐹𝑛, 𝐹) → 0 if and only
if 𝐹𝑛 converges weakly to 𝐹.

Proof. Exercise.

5.2 Characteristic function

Recall that the characteristic function of a real random variable 𝑋 is just the Fourier
transform Φ𝑋 (𝜉) = E[𝑒𝑖 𝜉𝑋 ]. In other words, the characteristic function of a proba-
bility measure 𝜇 is just Φ𝜇 (𝜉) =

∫
R
𝑒𝑖 𝜉 𝑥𝜇(𝑑𝑥). The study of characteristic functions

in probability can very well be a chapter on its own because of its importance.

Proposition 12 (Elementary properties of characteristic functions). Let 𝑋 be a
real random variable and Φ𝑋 its characteristic function.

1. For all 𝜉 ∈ R, |Φ𝑋 (𝜉) | ≤ Φ𝑋 (0) = 1.
2. For all 𝜉 ∈ R, Φ𝑋 (𝜉) = Φ𝑋 (−𝜉) = Φ−𝑋 (𝑡).
3. The function Φ𝑋 is uniformly continuous.
4. Let 𝑎, 𝑏 ∈ R. Then Φ𝑎𝑋+𝑏 (𝜉) = 𝑒𝑖 𝜉𝑏 · Φ𝑋 (𝑎𝜉).

Proof. Exercise.

We shall prove several important results about the characteristic function. In
particular, we will show the inversion formula, which justifies its name that the
characteristic function completely characterizes the law of a real random variable.

Theorem 11 (The inversion formula). Let 𝜇 be a probability measure on R and
Φ𝜇 its characteristic function. Then for all interval (𝑎, 𝑏) ⊂ R,

𝜇((𝑎, 𝑏)) + 1
2
𝜇({𝑎, 𝑏}) = 1

2𝜋
lim
𝑇→∞

∫ 𝑇

−𝑇

𝑒−𝑖 𝜉 𝑎 − 𝑒−𝑖 𝜉𝑏
𝑖𝜉

Φ𝜇 (𝜉)𝑑𝜉.

Here 𝜇({𝑎, 𝑏}) denotes the point masses of 𝜇 at 𝑎 and 𝑏. In particular, if 𝜇 is
continuous,

𝜇((𝑎, 𝑏)) = 1
2𝜋

lim
𝑇→∞

∫ 𝑇

−𝑇

𝑒−𝑖 𝜉 𝑎 − 𝑒−𝑖 𝜉𝑏
𝑖𝜉

Φ𝜇 (𝜉)𝑑𝜉.

In other words, there is a bijection between probability measures on R and char-
acteristic functions. Here’s a physical interpretation of the formula. Plancherel’s
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theorem tells us that the Fourier transform is an 𝐿2 isometry, and in particular, for
all 𝑓 , 𝑔 ∈ 𝐿2, we have

∫
R
𝑓 𝑔 =

∫
R
𝑓 �̂� by polarization (you can check this by Fubini

directly). Apply this to 1(𝑎,𝑏) and 𝜇 and we get almost the identity above, except for
points 𝑎 and 𝑏 at which 1(𝑎,𝑏) is discontinuous and we need to adjust them by the
principal values.

To make the above heuristics into an actual mathematical proof, some regulariza-
tion procedure should be applied. The actual choice of the regularization is a matter
of personal taste (the inversion formula is itself a principal value formula).

Proof. The idea of the proof is to examine the above heuristic about the Fourier
transform of the indicator function 1(𝑎,𝑏) via Fubini’s theorem. Consider

𝐼𝑇 =
1

2𝜋

∫ 𝑇

−𝑇

𝑒−𝑖 𝜉 𝑎 − 𝑒−𝑖 𝜉𝑏
𝑖𝜉

Φ𝜇 (𝜉)𝑑𝜉

=
1

2𝜋

∫ 𝑇

−𝑇

∫
R

𝑒−𝑖 𝜉 𝑎 − 𝑒−𝑖 𝜉𝑏
𝑖𝜉

𝑒𝑖 𝜉 𝑥𝜇(𝑑𝑥)𝑑𝜉

=
1

2𝜋

∫ 𝑇

−𝑇

∫
R

∫ 𝑏

𝑎
𝑒−𝑖 𝜉 𝑦𝑒𝑖 𝜉 𝑥𝑑𝑦𝜇(𝑑𝑥)𝑑𝜉

=
1

2𝜋

∫
R

(∫ 𝑏

𝑎

∫ 𝑇

−𝑇
𝑒−𝑖 𝜉 (𝑦−𝑥)𝑑𝜉𝑑𝑦

)
𝜇(𝑑𝑥),

where the use of Fubini for fixed𝑇, 𝑎, 𝑏 is allowed since the modulus of the integrand
in the last expression is always bounded by 1.

It follows that, to prove the inversion formula, we only need to study the integral

𝐽𝑇 (𝑥) =
∫ 𝑏

𝑎

∫ 𝑇

−𝑇
𝑒−𝑖 𝜉 (𝑦−𝑥)𝑑𝜉𝑑𝑦 =

∫ 𝑏−𝑥

𝑎−𝑥

∫ 𝑇

−𝑇
𝑒−𝑖 𝜉 𝑦𝑑𝜉𝑑𝑦

and show that lim𝑇→∞ 𝐽𝑇 (𝑥) = 2𝜋1(𝑎,𝑏) (𝑥) + 𝜋1{𝑎,𝑏} (𝑥).
For this, we need to use the symmetry of the interval [−𝑇,𝑇]. Integrating the

variable 𝜉 over [−𝑇,𝑇], we have

𝐽𝑇 (𝑥) =
∫ 𝑏−𝑥

𝑎−𝑥

𝑒−𝑖𝑇 𝑦 − 𝑒𝑖𝑇 𝑦

−𝑖𝑦 𝑑𝑦 =
∫ 𝑏−𝑥

𝑎−𝑥

2 sin(𝑇𝑦)
𝑦

𝑑𝑦 = 2
∫ 𝑇 (𝑏−𝑥)

𝑇 (𝑎−𝑥)

sin(𝑦)
𝑦

𝑑𝑦.

where we used a change of variables 𝑇𝑦 ↦→ 𝑦 in the last step. Now use the value of
the improper integral

lim
𝑇→∞

∫ 𝑇

0

sin(𝑦)
𝑦

𝑑𝑦 =
𝜋

2
to conclude.

Remark 55. That the limit in the inversion formula (a sort of principal value at
infinity) exists is a non-trivial fact. Compare this with the Fourier series of a periodic
function (of bounded variation) at a point of discontinuity.
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Remark 56 (A partial converse result). One can check using the inversion formula
that Φ𝑋 = Φ−𝑋 if and only if 𝑋 and −𝑋 are equal in law, i.e. when 𝑋 is symmetric.

Remark 57. One can prove the integral formula for the sinc function∫ ∞

0

sin(𝑥)
𝑥

𝑑𝑥 =
𝜋

2

using complex analysis: see Exercise E.16.1 of [Williams] for a hint. There is at least
another approach by considering

𝐺 (𝑡) =
∫ ∞

0

sin(𝑥)
𝑥

𝑒−𝑡 𝑥𝑑𝑥

and show that 𝐺 ′(𝑡) = − 1
1+𝑡2 .

Corollary 2 (Characterization of the law). Let 𝜇, 𝜈 be two probability measures
on (R,B(R)). If Φ𝜇 = Φ𝜈 , then 𝜇 = 𝜈.

Proof. Let𝐶 be the set of points where both 𝜇 and 𝜈 are continuous: its complement
𝐷 = R \ 𝐶 is at most countable. For all 𝑎, 𝑏 ∈ 𝐶, the previous theorme shows that
𝜇((𝑎, 𝑏)) = 𝜈((𝑎, 𝑏)). It remains to see that intervals of type (𝑎, 𝑏) with 𝑎, 𝑏 ∈ 𝐶 is
a 𝜋-system that generates B(R).

By studying the characteristic function, one can also gain a lot of information
about the probability distribution without explicitly identifying it. We give a list of
some basic examples: unless otherwise specified, we denote below by 𝜇 a probability
measure on R and Φ𝜇 its characteristic function.

Proposition 13 (Atoms from the characteristic function). For all 𝑎 ∈ R, we have

𝜇({𝑎}) = lim
𝑇→∞

1
2𝑇

∫ 𝑇

−𝑇
𝑒−𝑖 𝜉 𝑎Φ𝜇 (𝜉)𝑑𝜉.

Heuristically, this is what we get when we take |𝑏 − 𝑎 | → 0 in the inversion formula.
One can imitate the proof of the inversion formula to prove this.

Proposition 14 (Absolute continuity from the characteristic function). Suppose
that Φ𝜇 is integrable, i.e.

∫
R
|Φ𝜇 (𝜉) |𝑑𝜉 < ∞, then 𝜇 has (bounded continuous)

density

𝑝(𝑥) = 1
2𝜋

∫
R
𝑒−𝑖 𝜉 𝑥Φ𝜇 (𝜉)𝑑𝜉.

Heuristically, we take |𝑏 − 𝑎 | → 0 and the derivative in the inversion formula to
guess the density. One can prove this with the dominated convergence version of
Fubini’s theorem.

The next proposition tells us that the moments of a random variable can be
recovered by the local behavior of its characteristic function near the origin.
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Proposition 15 (Moments from the characteristic function). Let 𝑋 be a real ran-
dom variable in 𝐿𝑛, i.e. E[|𝑋 |𝑛] < ∞ for some integer 𝑛 ≥ 1. Then

E[𝑋𝑛] = (−𝑖)𝑛 𝑑𝑛

(𝑑𝜉)𝑛
��
𝜉=0Φ𝑋 (𝜉).

We use differentiation under the integral sign to calculate the 𝑛 − 𝑡ℎ derivative of
Φ𝑋 at all points 𝜉 ∈ R, then specialize at the point 𝜉 = 0.

We now record a partial converse of the calculation of moments that will be useful
in the proof of the central limit theorem later.

Proposition 16 (Second derivative and second moment). Let 𝑋 be a real random
variable and Φ𝑋 its characteristic function. If E[|𝑋 |2] < ∞, then for 𝜉 close to 0,

Φ𝑋 (𝜉) = 1 + 𝑖𝜉E[𝑋] − 𝜉2

2
E[𝑋2] + 𝑜(𝜉2).

Conversely, if lim sup𝜉 ↓0
Φ𝑋 ( 𝜉 )+Φ𝑋 (−𝜉 )−2Φ𝑋 (0)

𝜉 2 > −∞, then E[|𝑋 |2] < ∞.

Proof. The first part is an application of the previous proposition: one checks that
by Taylor expansion that the error term is bounded by 𝑡2E[|𝑡𝑋2 |] = 𝑜(𝑡2). Indeed,
as an elementary exercise (see Lemma 3.3.19 of [Durrett]), one checks that�����𝑒𝑖𝑥 − 𝑛∑

𝑚=0

(𝑖𝑥)𝑚
𝑚!

����� ≤ min
(
|𝑥 |𝑛+1

(𝑛 + 1)! ,
2|𝑥 |𝑛
𝑛!

)
.

In the special case of 𝑛 = 2, the second term is obtained as

𝑒𝑖𝑥 −
(
1 + 𝑖𝑥 + (𝑖𝑥)2

2

)
=
𝑖3

2

∫ 𝑥

0
(𝑥 − 𝑠)2𝑒𝑖𝑠𝑑𝑠 = 𝑖2

∫ 𝑥

0
(𝑥 − 𝑠) (𝑒𝑖𝑠 − 1)𝑑𝑠,

and since |𝑒𝑖𝑠 − 1| ≤ 2, integrating yields an error term of order |𝑥 |2.
The second part relies on the positivity of − 𝑒𝑖 𝜉 𝑥+𝑒−𝑖 𝜉 𝑥−2

𝜉 2 = 2 1−cos( 𝜉 𝑥)
𝜉 2 ≥ 0, and

this quantity converges to 𝑥2 as 𝜉 goes to 0. By Fatou’s lemma, E[𝑋2] is∫
R2
𝑥2P𝑋 (𝑑𝑥) ≤ lim inf

𝜉 ↓0

∫
R2

− 𝑒
𝑖 𝜉 𝑥 + 𝑒−𝑖 𝜉 𝑥 − 2

𝜉2 P𝑋 (𝑑𝑥)

= − lim sup
𝜉 ↓0

Φ𝑋 (𝜉) +Φ𝑋 (−𝜉) − 2Φ𝑋 (0)
𝜉2 ,

this shows the boundedness in 𝐿2.

Remark 58. The similar statement for Φ′
𝑋 (0) and 𝐿1 is wrong. Counter example:

integer-valued random variable 𝑋 with P[𝑋 = 𝑘] = P[𝑋 = −𝑘] = 1
𝑍

1
𝑘2 ln(𝑘) for all

𝑘 ≥ 3 and P[|𝑋 | ≤ 2] = 0 (and 𝑍 is a renormalization constant so that we have a
probability measure).
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5.3 Lévy’s continuity theorem

Let us first make an important observation, direct consequence of the above defini-
tions.

Proposition 17 (Convergence in law implies convergence of characteristic func-
tions). Suppose that the real random variables 𝑋1, 𝑋2, . . . converges in law to a real
random variable 𝑋 . Then Φ𝑋𝑛 converges to Φ𝑋 .

Proof. For all 𝜉 ∈ R, 𝑥 ↦→ 𝑒𝑖 𝜉 𝑥 is a continuous bounded function on R. The result
follows from the definition of weak convergence for random variables.

The remarkable fact about characteristic functions and the convergence in law is
that the converse statement of the above holds.

Theorem 12 (Lévy’s continuity theorem: simple version). Consider real random
variables 𝑋1, 𝑋2, . . . and 𝑋 and their characteristic functions. Then 𝑋𝑛 converges
in law to 𝑋 if and only if the sequence of characteristic functions Φ𝑋𝑛 converges
pointwise to Φ𝑋 .

Remark 59. We refer to Theorem 3.3.17 of [Durrett] for a detailed version of Lévy’s
continuity theorem. We avoid this version since it makes use of the notion of the
tightness of measures, which takes time to prepare and is not very useful for this
course (but this is a central notion in the study of convergence of measures).

We now give a (somewhat abstract) proof for the above simple version of Lévy’s
continuity theorem, just for completeness but you can skip it.

Proof. We have to use some preliminaries:

• When dealing with weak convergence of probability measures, we can replace
the space of test functions 𝑓 ∈ C𝑏 (R) by the space of continuous and compactly
supported 𝑓 ∈ C𝑐 (R) (see above);

• Fourier transforms is an automorphism on the space of Schwartz functions S,
and the inverse of the Fourier transform in this case is given by the classical
inversion formula;

• The Schwartz space S is dense in C𝑐 (R): this can be shown by the classical
Stone-Weierstrass approximation theorem.

Now take a Schwartz function 𝜑 ∈ S and consider its Fourier transform �̂�. Fourier
inversion formula works in the Schwartz space, so 𝜑(𝑥) =

∫
R
𝑒𝑖 𝜉 𝑥 �̂�(𝜉)𝑑𝜉. Apply to

𝑥 = 𝑋𝑛, we get

𝜑(𝑋𝑛) =
∫
R
𝑒𝑖 𝜉𝑋𝑛 �̂�(𝜉)𝑑𝜉.

Since 𝜑 is Schwartz, we can apply Fubini and take the expectation inside the integral:

E[𝜑(𝑋𝑛)] = E
[∫
R
𝑒𝑖 𝜉𝑋𝑛 �̂�(𝜉)𝑑𝜉

]
=

∫
R
E

[
𝑒𝑖 𝜉𝑋𝑛

]
�̂�(𝜉)𝑑𝜉 =

∫
R
Φ𝑋𝑛 (𝜉)�̂�(𝜉)𝑑𝜉.
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Similar formula holds forE[𝜑(𝑋)]. Since �̂� is also Schwartz, dominated convergence
tells us that if Φ𝑋𝑛 → Φ𝑋 then

E[𝜑(𝑋𝑛)] → E[𝜑(𝑋)]

as long as 𝜑 is Schwartz. To finish the proof, approximate any function 𝑓 ∈ C𝑐 (R)
by 𝜑 ∈ S and conclude using dominated convergence.

5.4 Central limit theorem

We have already seen that Fourier transform maps convolution to multiplication, or
in the language of probability, if 𝑋 and 𝑌 are independent real random variables,
then Φ𝑋+𝑌 = Φ𝑋 ·Φ𝑌 . To prepare for the central limit theorem, let us record a direct
corollary.

Corollary 3 (Sum of independent random variables). Let 𝑋1, 𝑋2, . . . be indepen-
dent real random variables. Then Φ𝑋1+···+𝑋𝑛 = Φ𝑋1 × · · · ×Φ𝑋𝑛 .

We have enough prerequisites now to prove the central limit theorem. Recall that
the characteristic function of a standard Gaussian variable N is ΦN (𝜉) = 𝑒−𝜉 2/2.

Theorem 13 (Central limit theorem). Let {𝑋𝑛}𝑛≥1 be a sequence of independent
identically distributed random variables. Suppose furthermore that they are centered,
i.e. E[𝑋1] = 0 and in 𝐿2, with 𝜎2 = var[𝑋1] = E[(𝑋1)2]. Then

1
√
𝑛
(𝑋1 + · · · + 𝑋𝑛)

(d)→ N(0, 𝜎2),

where N(0, 𝜎2) is the centered Gaussian distribution with variance 𝜎2.

Proof. Denote by 𝑍𝑛 = 1√
𝑛
(𝑋1 + · · · + 𝑋𝑛). By the previous corollary, the charac-

teristic function of 𝑍𝑛 is

Φ𝑍𝑛 (𝜉) =
(
Φ𝑋1 (𝜉/

√
𝑛)

)𝑛
.

Since 𝑋1 has finite second moment, its characteristic function writes

Φ𝑋1 (𝜉) = 1 − 𝜎2

2
𝜉2 + 𝑜(𝜉2)

for 𝜉 → 0. Therefore, for any fixed 𝜉 ∈ R, as 𝑛→ ∞,

Φ𝑍𝑛 (𝜉) =
(
1 − 𝜎2

2𝑛
𝜉2 + 𝑜(1/𝑛)

)𝑛
→ exp

(
−𝜎

2𝜉2

2

)
.

The last one is the characteristic function of N(0, 𝜎2), and we conclude by Lévy’s
continuity theorem.
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Remark 60. In most textbooks, the condition that 𝑋𝑛 are centered is not included in
the theorem. This is only because I have decided to put the central limit theorem
before the easier-to-prove laws of large numbers.

5.5 Applications and various extensions

We have limited time and we only covered the basics that lead to the central limit
theorem. Below is a list of topics for further studies (with my personal taste).

• Stirling’s formula from central limit theorem.
• Concentration of measures.
• Helly’s selection theorem and tightness of a sequence of measures.
• Bochner’s theorem, Khinchine’s theorem and Pólya’s criteria.
• The moment problem.
• Different versions and variants of the central limit theorem.
• Infinitely divisible laws and infinitely divisible characteristic functions.
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Chapter 6
Convergence in probability

The convergence in probability expresses the idea that a sequence of random variables
{𝑋𝑛}𝑛≥1 goes “very close” to some other random variable 𝑋 with “high probability”,
without necessarily having a pointwise convergence.

6.1 Convergence in probability

Let us start with a usual definition for the convergence in probability. Notice that we
require all random variables to be defined on the same probability space.

Definition 33 (Convergence in probability). Consider real random variables {𝑋𝑛}𝑛≥1
and 𝑋 defined on the same probability space (Ω, F , P). We say {𝑋𝑛}𝑛≥1 converges
in probability to 𝑋 if for all 𝜖 > 0,

lim
𝑛→∞
P[|𝑋𝑛 − 𝑋 | > 𝜖] = 0.

We usually denote this by 𝑋𝑛
(P)→ 𝑋 .

Remark 61. In some sense, 𝑋𝑛 and 𝑋 can still be very different on a small portion 𝐸𝑛

of Ω, and we only require that the size of 𝐸𝑛 goes to 0 while the sequence {𝐸𝑛}𝑛≥1
can fluctuate and move around in Ω.

We will always assume that, when speaking of convergence in probability, that
all the random variables are defined on the same probability space. In this case, one
should care about the uniqueness of the limit in probability.

Proposition 18 (Uniqueness of the limit in probability). Suppose that {𝑋𝑛}𝑛≥1
converges in probability. Then the limit is unique P-almost everywhere.

Proof. Suppose we have two limits 𝑋 and 𝑌 . Then the set on which they differ at
least by 𝜖 has P-measure at most
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P[|𝑋 − 𝑌 | > 𝜖] ≤ P[|𝑋 − 𝑋𝑛 | > 𝜖/2] + P[|𝑌 − 𝑋𝑛 | > 𝜖/2]

for all 𝑛. In other words, if |𝑋 −𝑌 | > 𝜖 then either |𝑋 − 𝑋𝑛 | > 𝜖/2 or |𝑌 − 𝑋𝑛 | > 𝜖/2,
and we apply the union bound. Now the right hand side above converges to 0 as 𝜖
goes to 0, so P[𝑋 ≠ 𝑌 ] = 0. That is, the limit in probability is P-almost everywhere
unique.

Remark 62. It is customary in probability theory to identify objects that are equal
almost everywhere. That is, for random variables, we also work under the equivalence
class induced by the relation 𝑋 ∼ 𝑌 if and only if P-almost everywhere, we have
𝑋 = 𝑌 .

Remark 63. We cannot ask the same question for the convergence in law, since
random variables that are different almost everywhere may induce the same law.

The convergence in probability can be realized as a complete metric space on the
space of real random variables on (Ω, F , P).

Proposition 19 (Complete metric space structure for the convergence in prob-
ability). The convergence in probabability can be characterized by the complete
metric 𝑑 (𝑋,𝑌 ) = E[min( |𝑋−𝑌 |, 1)]. Otherwise said, the space of random variables
on (Ω, F , P) is a Banach space under the distance 𝑑, and convergence in probability
is equivalent to convergence in the distance 𝑑.

Proof. It is routine to verify that 𝑑 is a distance. The fact that 𝑑 characterizes the
convergence in probability follows from that for all 𝜖 < 1,

𝑑 (𝑋,𝑌 ) ≤ E[min(|𝑋 − 𝑌 |, 1) (1 |𝑋−𝑌 | ≤𝜖 + 1 |𝑋−𝑌 |>𝜖 )] ≤ 𝜖 + P[|𝑋 − 𝑌 | > 𝜖],
P[|𝑋 − 𝑌 | > 𝜖] ≤ 𝜖−1E[min( |𝑋 − 𝑌 |, 1)] = 𝜖−1𝑑 (𝑋,𝑌 ).

The proof of completeness is postponed to next week when the notion of almost
sure convergence would be defined.

We also mention the continuous mapping theorem.

Proposition 20 (Continuous mapping theorem). Suppose that a sequence of real
random variables {𝑋𝑛}𝑛≥0 converges in probability towards 𝑋 . Then if 𝑔 is a con-
tinuous real function, the sequence {𝑔(𝑋𝑛)}𝑛≥0 converges in probability towards
𝑔(𝑋).

Proof. Exercise.

Observe that the convergence in probability is stronger than the convergence in
law:
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Proposition 21 (Convergence in probability implies convergence in law). Sup-
pose that a sequence of real random variables {𝑋𝑛}𝑛≥0 converges in probability to
a random variable 𝑋 . Than {𝑋𝑛}𝑛≥0 converges in law to 𝑋 .

Proof. Let 𝑓 ∈ C𝑐 (R) be a continuous, compactly supported function, and show
that E[ 𝑓 (𝑋𝑛)] converges to E[ 𝑓 (𝑋)]. For all 𝜖 > 0,

E[| 𝑓 (𝑋𝑛) − 𝑓 (𝑋) |] ≤ E[| 𝑓 (𝑋𝑛) − 𝑓 (𝑋) |1 |𝑋𝑛−𝑋 |>𝜖 ] +E[| 𝑓 (𝑋𝑛) − 𝑓 (𝑋) |1 |𝑋𝑛−𝑋 | ≤𝜖 ] .

Since P[|𝑋𝑛 − 𝑋 | > 𝜖] → 0 and | 𝑓 (𝑋𝑛) − 𝑓 (𝑋) | ≤ 2| | 𝑓 | |∞, the first term goes to
0 as 𝑛 goes to 0. The second term also vanishes in the 𝑛 → ∞ limit by the uniform
continuity of 𝑓 . This shows the convergence in law since |E[ 𝑓 (𝑋𝑛) − 𝑓 (𝑋)] | ≤
E[| 𝑓 (𝑋𝑛) − 𝑓 (𝑋) |] → 0 as 𝑛→ ∞.

A partial converse is true when the limit 𝑋 is (almost surely) a constant.

Proposition 22 (Convergence in law to a constant implies convergence in prob-
ability). If a sequence of random variables {𝑋𝑛}𝑛≥1 converges in law to a constant
𝑐, than it converges in probability to 𝑐.

Proof. Consider the continuous bounded function 𝑓 (𝑥) = min(|𝑥 − 𝑐 |, 1). By con-
vergence in law, E[ 𝑓 (𝑋𝑛)] → E[ 𝑓 (𝑐)]. But this is E[min(|𝑋𝑛 − 𝑐 |, 1)] → 0, which
is an equivalent definition for the convergence in probability.

Remark 64. Actually, if 𝑋𝑛 and 𝑋 are independent for every 𝑛, the only possible case
where the convergence in probability can happen is when 𝑋 is a constant.

A further result in this direction is known as Slutsky’s theorem. The proof of
Slutsky’s theorem is omitted in this note.

Theorem 14 (Slutsky’s theorem). Suppose that {𝑋𝑛}𝑛≥1, {𝑌𝑛}𝑛≥1 are sequences
of real random variables, {𝑋𝑛}𝑛≥1 converging in law to 𝑋 and {𝑌𝑛}𝑛≥1 converging
in law to a constant 𝑐 ∈ R.

1. The sequence {𝑌𝑛}𝑛≥1 converges in fact in probability to 𝑐.
2. The sequence of vectors {(𝑋𝑛, 𝑌𝑛)}𝑛≥1 converges in law to (𝑋, 𝑐).

6.2 Convergence in 𝑳 𝒑

There is a practical sufficient condition for establishing convergence in probability.

Definition 34 (Convergence in 𝐿 𝑝). Let 1 ≤ 𝑝 < ∞. A sequence of real random
variables {𝑋𝑛}𝑛≥0 converges in 𝐿 𝑝 towards some real random variable 𝑋 if

lim
𝑛→∞
E[|𝑋𝑛 − 𝑋 |𝑝] = 0.

The finiteness of the 𝑝-th moment yields some information on the tail of the difference
|𝑋𝑛 − 𝑋 | by Markov’s inequality.
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Proposition 23 (Convergence in 𝐿 𝑝 implies convergence in probability). Let 1 ≤
𝑝 < ∞ and suppose that {𝑋𝑛}𝑛≥0 converges in 𝐿 𝑝 towards some real random
variable 𝑋 . Then {𝑋𝑛}𝑛≥0 converges in probability to 𝑋 .

Proof. For fixed 𝜖 > 0, we have, as 𝑛→ ∞,

P[|𝑋𝑛 − 𝑋 | > 𝜖] ≤
E[|𝑋𝑛 − 𝑋 |𝑝]

𝜖 𝑝
→ 0.

where we used Markov’s inequality and then the convergence in 𝐿 𝑝 . This shows the
convergence in probability.

Notice that the above proof actually works for 0 < 𝑝 < ∞. Notice also that conver-
gence in 𝐿 𝑝 implies convergence of the 𝐿 𝑝-norms of the random variables.

Proposition 24 (Convergence of 𝐿 𝑝-norms). et 1 ≤ 𝑝 < ∞ and suppose that
{𝑋𝑛}𝑛≥0 converges in 𝐿 𝑝 towards some real random variable 𝑋 . If furthermore, all
random variables are in 𝐿 𝑝 , then | |𝑋𝑛 | |𝐿𝑝 converges to | |𝑋 | |𝐿𝑝 as well.

Proof. This is a consequence of the Minkowski’s inequality.

Remark 65. Sometimes, convergence in 𝐿1 is called convergence in mean.

6.3 Weak law of large numbers

The law of large numbers deals with the average of i.i.d. random variables. As a
warm-up, we show a simple weak law of large numbers.

Theorem 15 (𝐿2 weak law of large numbers). Let {𝑋 𝑗 } 𝑗≥1 be a sequence of in-
dependent identically distributed random variables on the same probability space.
Suppose that they are in 𝐿1, i.e. the average E[𝑋1] = 𝜇 ∈ R exists. Suppose further-
more that E[(𝑋1 − 𝜇)2] = 𝜎2 < ∞. Then the average 𝑆𝑛

𝑛 = 𝑋1+···+𝑋𝑛

𝑛 converges in
probability to the constant 𝜇.

Proof. First, we can suppose that 𝜇 = 0 by replacing 𝑋 𝑗 by 𝑋 𝑗 − 𝜇: this will
simplify the following proof and we shall show that 𝑆𝑛 converges in probability to
the constant 0. It is also useful to observe that, by independence, var(𝑋1+ · · ·+𝑋𝑛) =
var(𝑋1) + · · · + var(𝑋𝑛).

It follows that E
[
(𝑆𝑛/𝑛)2] = 𝜎2/𝑛, so that {𝑆𝑛/𝑛}𝑛≥1 converges in 𝐿2 towards

0. This implies that {𝑆𝑛/𝑛}𝑛≥1 converges in probability to 0.

Remark 66. Notice that we actually only used the non-decorrelation, i.e. cov(𝑋 𝑗 , 𝑋𝑘 ) =
0, rather then the independence property.

Remark 67. You can also prove this result by using the central limit theorem and
use (the simple) Slutsky to upgrade the convergence in law to a convergence in
probability.
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We now prepare ourselves to get rid of the 𝐿2 assumption above. I personally
call this the “𝐿1-𝐿2 trick”, as it is a general strategy that finds itself useful in many
applications. The guiding idea is that a 𝐿2 estimate is worse than a 𝐿1 estimate on
the tail of a random variable, so we should treat the small values with a 𝐿2 method
and the large values with a 𝐿1 method.

Theorem 16 (Weak law of large numbers). Let {𝑋 𝑗 } 𝑗≥1 be a sequence of inde-
pendent identically distributed random variables on the same probability space.
Suppose that they are in 𝐿1, i.e. the average E[𝑋1] = 𝜇 ∈ R exists. Then the average
𝑆𝑛
𝑛 = 𝑋1+···+𝑋𝑛

𝑛 converges in probability to the constant 𝜇.

Proof. Suppose that 𝜇 = 0. For 𝐿 > 0, write 𝑋 𝑗 = 𝑋 𝑗1{ |𝑋 𝑗 |>𝐿 } + 𝑋 𝑗1{ |𝑋 𝑗 | ≤𝐿 } and

𝑆𝑛
𝑛

=

𝑛∑
𝑗=1
𝑋 𝑗1{ |𝑋 𝑗 |>𝐿 }

𝑛
+

𝑛∑
𝑗=1
𝑋 𝑗1{ |𝑋 𝑗 | ≤𝐿 }

𝑛
C
𝑆>𝑛
𝑛

+ 𝑆
≤
𝑛

𝑛
.

By dominated convergence, E[|𝑋 𝑗 |1{ |𝑋 𝑗 |>𝐿 }] → 0 as 𝐿 → ∞ (see the remark after
Markov’s inequality). Therefore, linearity of expectation yields that as 𝐿 → ∞,

E

[����𝑆>𝑛𝑛 ����] =

𝑛∑
𝑗=1
E[|𝑋 𝑗 |1{ |𝑋 𝑗 |>𝐿 }]

𝑛
→ 0.

Therefore, given 𝜖 > 0 and 𝛿 > 0, Markov’s inequality yields that for 𝐿 = 𝐿 (𝜖) large
enough,

P

[����𝑆>𝑛𝑛 ���� > 𝜖

2

]
≤ 2
𝜖
E[|𝑋 𝑗 |1{ |𝑋 𝑗 |>𝐿 }] ≤

𝛿

2
.

To show the weak law of large numbers, it remains to see (via the union bound) that,
for large enough 𝑛,

P

[����𝑆≤𝑛𝑛 ���� > 𝜖

2

]
≤ 𝛿

2
,

but this is true since for fixed 𝐿 > 0, the truncated random variable 𝑋 𝑗1{ |𝑋 𝑗 | ≤𝐿 } is
in 𝐿2, and the above equation follows from the 𝐿2 weak law of large numbers.
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Chapter 7
Almost sure convergence

We finish this course with the strongest form of convergence of random variables:
the almost sure convergence. With the large of large numbers, we can finally justify
mathematically our intuition that the probabability of an event corresponds to its
frequency of apparition when the same experiment is repeated a large number of
times.

7.1 Almost sure convergence

The almost sure convergence is the pointwise convergence in probability.

Definition 35 (Almost sure convergence). Consider real random variables {𝑋𝑛}𝑛≥1
and 𝑋 defined on the same probability space (Ω, F , P). We say that {𝑋𝑛}𝑛≥1 con-
verges almost surely to 𝑋 if for P-almost all 𝜔 ∈ Ω, 𝑋𝑛 (𝜔) → 𝑋 (𝜔) as 𝑛 → ∞.
Otherwise said,

P[𝜔 ∈ Ω ; 𝑋 (𝜔) = lim
𝑛→∞

𝑋𝑛 (𝜔)] = 1.

We usually denote this by 𝑋𝑛
a.s.→ 𝑋 , where a.s. stands for almost sure(ly).

The almost sure convergence is the strongest mode of convergence.

Proposition 25 (Almost sure convergence implies convergence in probability).
Consider real random variables 𝑋1, . . . , 𝑋𝑛 and 𝑋 defined on the same probability
space (Ω, F , P), and that {𝑋𝑛}𝑛≥1 converges almost surely to 𝑋 . Then {𝑋𝑛}𝑛≥1
converges in probability to 𝑋 .

Proof. Suppose that {𝑋𝑛}𝑛≥1 converges almost surely to 𝑋 and show that as 𝑛→ ∞,
we have E[min(|𝑋𝑛 − 𝑋 |, 1)] → 0 (recall the complete metric space structure
for the convergence in probability). But this follows immediately from dominated
convergence.

We have the partial converse of the above:
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Proposition 26 (Convergence in probability implies subsequential almost sure
convergence). Consider real random variables 𝑋1, . . . , 𝑋𝑛 and 𝑋 defined on the
same probability space (Ω, F , P), and that {𝑋𝑛}𝑛≥1 converges in probability to 𝑋 .
Then {𝑋𝑛}𝑛≥1 has a subsequence that converges almost surely to 𝑋 .

Proof. The proof is actually contained in the proof of the completeness of the metric
of convergence in probability: let us prove the latter now.

To see the completeness of the metric 𝑑 (𝑋,𝑌 ) = E[min(|𝑋 − 𝑌 |, 1)], we should
prove that all Cauchy sequences {𝑋𝑛}𝑛≥1 under 𝑑 converge to some real random
variable 𝑋 in the limit. As it is customary, choose a subsequence {𝑌𝑛}𝑛≥1 of the
Cauchy sequence {𝑋𝑛}𝑛≥1 such that 𝑑 (𝑌𝑛, 𝑌𝑛+1) ≤ 2−𝑛. It follows that∑

𝑛≥1
𝑑 (𝑌𝑛, 𝑌𝑛+1) =

∑
𝑛≥1
E[min( |𝑌𝑛 − 𝑌𝑛+1 |, 1)] = E[

∑
𝑛≥1

min( |𝑌𝑛 − 𝑌𝑛+1 |, 1)] < ∞,

so
∑

𝑛≥1 min(|𝑌𝑛 − 𝑌𝑛+1 |, 1) < ∞ almost surely.
Actually, this implies that

∑
𝑛≥1 |𝑌𝑛 − 𝑌𝑛+1 | < ∞ almost surely, since there can

be only finitely many terms for which min( |𝑌𝑛 − 𝑌𝑛+1 |, 1) = 1 when the sum con-
verges. Then 𝑌1 +

∑
𝑛≥1 (𝑌𝑛+1 −𝑌𝑛) is almost surely absolutely convergent, therefore

convergent, and by denoting its limit as 𝑋 , we have 𝑌𝑛 → 𝑋 almost surely.
Now by dominated convergence, lim𝑛→∞ E[min( |𝑌𝑛−𝑋 |, 1)] = 0, so𝑌𝑛 converges

in probability to 𝑋 . It is not hard to see that by construction, 𝑋𝑛 converges in
probability to 𝑋 as well.

Compare this also to the proof of the Riesz-Fisher theorem (about the completeness
of 𝐿1) in functional analysis.

The relation between almost sure convergence and convergence in law is more
abstract.

Proposition 27 (Almost sure convergence implies convergence in law). Con-
sider real random variables {𝑋𝑛}𝑛≥1 and 𝑋 defined on the same probability space
(Ω, F , P), and suppose that {𝑋𝑛}𝑛≥1 converges almost surely to 𝑋 . Then {𝑋𝑛}𝑛≥1
converges in law to 𝑋 .

Proof. We have seen already that almost sure convergence implies convergence in
probability, which in turn implies convergence in law.

The partial converse statement is given by Skorokhod’s representation theorem. The
latter says that convergence in law can be realized by almost sure convergence, but
in possibly a different probability space (recall that the convergence in law do not
require that all random variables are defined on the same probability space, it is
a definition about the laws of the random variables, i.e. their induced probability
measures).

Theorem 17 (Skorokhod’s representation theorem). Suppose {𝑌𝑛}𝑛≥1 is a se-
quence of real random variables converging to some real random variable 𝑌 ; these
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random variables are not necessarily defined on the same probability space. Then
there exists a probability space (Ω, F , P) with real random variables {𝑋𝑛}𝑛≥1 and
𝑋 on this probability space such that:

1. For each 𝑛 ≥ 1, 𝑋𝑛 and 𝑌𝑛 are equal in law; 𝑋 and 𝑌 are also equal in law.
2. The sequence {𝑋𝑛}𝑛≥1 converges almost surely to 𝑋 .

Proof. See Theorem 3.2.8 of [Durrett].

Remark 68. The Skorokhod representation theorem is a practical device to simplify
many proofs, including some general facts about the convergence in law.

7.2 Random variable in the tail 𝝈-algebra

We prepare ourselves for the law of large numbers. Recall that Kolmogorov’s zero-
one law says that if {𝑋𝑛}𝑛≥1 are independent random variables and T the associated
tail 𝜎-algebra, then T is independent of itself. One consequence is the following:
Proposition 28 (Random variable in the tail 𝜎-algebra). Suppose that {𝑋𝑛}𝑛≥1
are independent random variables on (Ω, F , P) and T the associated tail𝜎-algebra.
Then if some random variable 𝑋 is T -measurable, 𝑋 is almost surely constant in
[−∞,∞].
Proof. If 𝑋 is T -measurable, then 𝐴 = {𝑋 ≤ 𝑎} ∈ T is a tail event, so P[𝑋 ≤ 𝑎] ∈
{0, 1}. This implies that the cumulative function 𝐹𝑋 can only take two values: 0 or 1.
But 𝐹𝑋 (𝑎) is increasing in 𝑎, so if 𝑡 = inf{𝑎 ∈ [−∞,∞] ; 𝐹𝑋 (𝑎) = 1} the moment
where 𝐹𝑋 (𝑎) jumps from 0 to 1, then 𝑋 = 𝑡 almost surely.

Corollary 4. Suppose that {𝑋 𝑗 } 𝑗≥1 are independent random variables on (Ω, F , P)
and 𝑆𝑛 = 𝑋1 + · · · + 𝑋𝑛 for 𝑛 ≥ 1. Then lim sup𝑛→∞

𝑆𝑛
𝑛 is almost surely constant.

Proof. This is because lim sup𝑛→∞
𝑆𝑛
𝑛 is a tail random variable.

Therefore, if we know that the limit lim𝑛→∞
𝑆𝑛
𝑛 exists, then it is almost surely a

constant in [−∞,∞]. The strong law of large numbers establishes the convergence
and identifies its value in the case of i.i.d. random variables.

We cannot resist mentioning another application on simple random walks.
Proposition 29 (Recurrence of 1𝑑 simple random walk). Suppose that {𝑋𝑛}𝑛≥1
are independent random variables on (Ω, F , P), each distributed as a fair coin toss
in {−1, 1}. Let 𝑆𝑛 = 𝑋1 + · · · + 𝑋𝑛 for 𝑛 ≥ 1. Then almost surely,

lim sup
𝑛→∞

𝑆𝑛 = ∞ and lim inf
𝑛→∞

𝑆𝑛 = −∞.

In particular, 𝑆𝑛 = 0 for infinitely many 𝑛 ≥ 1, i.e. 𝑆𝑛 is recurrent (it returns infinitely
many times to its initial state).
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Proof. We have already seens that P[lim sup𝑛→∞ 𝑆𝑛 = ∞] ∈ {0, 1}. A similar
argument shows that P[lim inf𝑛→∞ 𝑆𝑛 = −∞] ∈ {0, 1}. But by symmetry, these two
probabilities are equal. The result follows if we can show that {𝑆𝑛}𝑛≥1 is almost
surely not bounded, since then by union bound,

P[lim sup
𝑛→∞

𝑆𝑛 = ∞] + P[lim inf
𝑛→∞

𝑆𝑛 = −∞] ≥ P[{𝑆𝑛}𝑛≥1 is unbounded] = 1,

so the only possibility is that both of these probabilities are 1.
To show that {𝑆𝑛}𝑛≥1 is almost surely unbounded, we just need a crude estimate

that {𝑆𝑛}𝑛≥1 is almost surely not included in any interval [−𝑝, 𝑝] for any 𝑝 ≥ 0: the
unboundedness follows then from the union bound

P[{𝑆𝑛}𝑛≥1 is bounded] ≤ P[∃𝑝 ≥ 1,∀𝑛 ≥ 1, 𝑆𝑛 ∈ [−𝑝, 𝑝]]
≤

∑
𝑝≥1
P[∀𝑛 ≥ 1, 𝑆𝑛 ∈ [−𝑝, 𝑝]] .

To show that {𝑆𝑛}𝑛≥1 is almost surely not bounded in [−𝑝, 𝑝], it suffices to show
that almost surely, {𝑆𝑛}𝑛≥1 has a consecutive sequence of 1:s of length 2𝑝 + 2. This
is an easy application of the (second) Borel-Cantelli’s lemma and finishes the proof.

7.3 Law of large numbers

The strong law of large numbers upgrades the mode of convergence of the weak law
of large numbers: we are interested in results about almost sure convergence in lieu
of convergence in probability. Let us start with a simple version.

Theorem 18 (𝐿4 strong law of large numbers). Let {𝑋 𝑗 } 𝑗≥1 be a sequence of
independent identically distributed random variables on the same probability space.
Suppose that they are in 𝐿1, i.e. the average E[𝑋1] = 𝜇 ∈ R exists. Suppose
furthermore that E[𝑋4

1 ] < ∞. Then the average 𝑆𝑛
𝑛 = 𝑋1+···+𝑋𝑛

𝑛 converges almost
surely to the constant 𝜇.

Proof. Again we suppose 𝜇 = 0. The idea is to show that E[(𝑆𝑛/𝑛)4] decays fast
enough. To see this, develop the factor (𝑋1 + · · · + 𝑋𝑛)4 and observe that

E[(𝑋1 + · · · + 𝑋𝑛)4] ≤ 𝑛E[𝑋4
1 ] + 3𝑛(𝑛 − 1)

(
E[𝑋2

1 ]
)2

≤ 𝐶𝑛2.

It follows that E[(𝑆𝑛/𝑛)4] ≤ 𝐶𝑛−2, which is summable. By Fubini-Tonelli, we have

E

[∑
𝑛≥1

(𝑆𝑛/𝑛)4

]
< ∞.

This implies that
∑

𝑛≥1 (𝑆𝑛/𝑛)4 < ∞ almost surely, which in turn implies that 𝑆𝑛/𝑛
converges to 0 almost surely.
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As an importance (and largely popularized) consequence:

Corollary 5 (Frequency of apparition). If {𝐴𝑛}𝑛≥0 is a sequence of independent
events in (Ω, F , P) with same probability, then the following convergence holds
almost surely:

1
𝑛

𝑛∑
𝑗=1

1𝐴 𝑗 → P[𝐴1] .

Proof. The indicator function 1𝐴1 is bounded in 𝐿4: therefore the 𝐿4 strong law of
large numbers applies.

We can loosen the 𝐿4 restriction above. There are many proofs of this ultraclassical
result, we select one that is adapted to our knowledge about probability theory.

Theorem 19 (Strong law of large numbers). Let {𝑋 𝑗 } 𝑗≥1 be a sequence of in-
dependent identically distributed random variables on the same probability space.
Suppose that they are in 𝐿1, i.e. the average E[𝑋1] = 𝜇 ∈ R exists. Then the average
𝑆𝑛
𝑛 = 𝑋1+···+𝑋𝑛

𝑛 converges almost surely to the constant 𝜇.

Proof. See Theorem 2.4.1 (the proof finishes at Theorem 2.4.5) of [Durrett]. The
proof that I prefer uses the theory of martingales (which you will learn in Probability
Theory II).

Remark 69. If 𝑋1 is positive and E[𝑋1] = ∞, applying the theorem to min(𝑋1, 𝑘) for
positive integer 𝑘 shows that 𝑆𝑛 converges almost surely to ∞.

7.4 Some classical applications

Some other topics related to this chapter:

• Law of the iterated logarithms;
• Cramér’s theorem on large deviations;
• Kolmogorov’s three series theorem;
• Lévy’s theorem on the equivalence of different convergences in the case of the

sum of i.i.d. random variables.
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Exercise set III

Exercises marked with ! are important and those with ★ are difficult.

Exercise 15 (! – Convergence in law of Gaussian variables). Suppose that a se-
quence of real Gaussian variables 𝑋1, 𝑋2, . . . converges in law to some random
variable 𝑋 . Show that 𝑋 must be a Gaussian variable as well.

Exercise 16 (! – Sublinearity of simple random walk). We call 𝜖 a Rademacher
random variable if it takes value in {−1, 1} with equal probability. Consider an i.i.d.
sequence {𝜖𝑛}𝑛≥1 of Rademacher random variables and show that, for all 𝑡 > 0,

P


𝑛∑
𝑗=1
𝜖 𝑗 ≥ 𝑡

 ≤ exp
(
− 𝑡

2

2𝑛

)
.

Deduce that a simple random walk 𝑆𝑛 =
∑𝑛

𝑗=1 𝜖 𝑗 is sub-linear, i.e. for all 𝑎 > 0,
almost surely there exists some 𝑛0 ≥ 1 such that 𝑆𝑛 ≤ 𝑎𝑛 for all 𝑛 ≥ 𝑛0.

Exercise 17 (Minimum of independent uniform distributions). Let𝑈1, . . . ,𝑈𝑛, . . .
be a sequence of i.i.d. uniform distributions on [0, 1]. Show that

lim
𝑛→∞

𝑛min{𝑈1, . . . ,𝑈𝑛}

converges in law to 𝑋 ∼ Exp(1). Could you have guessed this result using a charac-
teristic property of the exponential distribution?

Exercise 18 (Convergence in probability does not imply almost sure conver-
gence). Consider 𝑋 𝑗 = B(0, 1/ 𝑗) a sequence of independent biaised coin tosses in



{0, 1} for 𝑗 ≥ 1, each 𝑋 𝑗 taking the value 1 with probability 1/ 𝑗 . Show that 𝑋 𝑗

converges in probability to 0, but 𝑋 𝑗 does not converge almost surely.

Exercise 19 (Convergence in probability and topology). Show that a sequence of
real random variables 𝑋1, 𝑋2, . . . converges in probability towards a random variable
𝑋 if and only if

lim
𝑛→∞
E

[
|𝑋𝑛 − 𝑋 |

1 + |𝑋𝑛 − 𝑋 |

]
= 0.

Show that the space of random variables on (Ω, F , P) with the distance

𝑑 (𝑋,𝑌 ) = E
[

|𝑋 − 𝑌 |
1 + |𝑋 − 𝑌 |

]
is a Banach space.

Exercise 20 (! – Slutsky’s theorem). Suppose that 𝑋𝑛, 𝑌𝑛 are sequences of real
random variables, 𝑋𝑛 converging in law to 𝑋 and 𝑌𝑛 converging in law to a constant
𝑐 ∈ R.

1. Show that 𝑌𝑛 converges in fact in probability to 𝑐.
2. Show that the vector (𝑋𝑛, 𝑌𝑛) converges in law to (𝑋, 𝑐).
3. Give an example where if we suppose that 𝑌𝑛 converges in law to a general

random variable 𝑌 , the result above about the joint convergence is wrong.

Exercise 21 (Almost complete convergence). Given random variables {𝑋𝑛}𝑛≥1 and
𝑋 on the same probability space, we say that {𝑋𝑛}𝑛≥1 converges almost completely
(n.b.: never used this terminology myself) to 𝑋 if for all 𝜖 > 0,∑

𝑛≥1
P[|𝑋𝑛 − 𝑋 | > 𝜖] < ∞.

Show that {𝑋𝑛}𝑛≥1 converges almost surely to 𝑋 . Deduce that every sequence of
random variables converging in probability has a subsequence converging almost
surely.

Exercise 22 (Centered random walks). Let {𝑋𝑛}𝑛≥1 be a sequence of i.i.d. real
random variables defined on the same probability space and 𝑆𝑛 = 𝑋1 + · · · + 𝑋𝑛.
Suppose that E[𝑋1] = 0 and 0 < E[(𝑋1)2] < ∞. An example is given by taking
{𝑋𝑛}𝑛≥1 to be an independent sequence of fair toin cosses.

1. Let {𝑋 𝑗𝑘 }𝑘≥1 denote a subsequence of 𝑋𝑛. Use Kolmogorov’s zero-one law to
show that

P

[
lim sup
𝑘→∞

𝑆 𝑗𝑘√
𝑗𝑘

= ∞
]
= 1; P

[
lim inf
𝑘→∞

𝑆 𝑗𝑘√
𝑗𝑘

= −∞
]
= 1.



Hint: use the central limit theorem to give a lower bound for each probability
above.

2. Deduce that the sequence {𝑋𝑛}𝑛≥1 does not converge in probability.

Exercise 23 (★ – Longest head-runs). Consider 𝑛 independent fair coin tosses
{𝑋 𝑗 }1≤ 𝑗≤𝑛 with value in {−1, 1}. Consider 𝐿𝑛, the length of the longest consecutive
appearances of 1:s. More precisely, let 𝑙𝑘 = max{𝑚 ; 𝑋𝑘−𝑚+1 = · · · = 𝑋𝑘 = 1} be
the longest run of 1:s at time 𝑘 , and 𝐿𝑛 = max1≤𝑘≤𝑛 𝑙𝑘 the global longest run of 1:s.

We will prove that 𝐿𝑛

ln2 𝑛
→ 1 almost surely as 𝑛→ ∞.

1. Show that for all 𝜖 > 0, P[𝑙𝑘 ≥ (1 + 𝜖) ln2 𝑘] ≤ 𝑛−(1+𝜖 ) . Use the summability
of 𝑛−(1+𝜖 ) and Borel-Cantelli’s lemma to conclude that lim sup𝑛

𝐿𝑛

ln2 𝑛
≤ 1.

2. For the other direction, break 𝑛 tossings into disjoint blocks of length approxi-
mately (1 − 𝜖) ln2 𝑛 each. For one block of this length, calculate approximately
the probability to have only 1:s inside the box. Estimate the number of blocks
and then the probability that, at time 𝑛, non of these boxes has only 1:s inside.
Relate the last calculation with P[𝐿𝑛 ≤ (1 − 𝜖) ln2 𝑛] and use Borel-Cantelli to
conclude (and write a proper version without the “approximately”).

[Schilling – The Longest Run of Heads; Durrett – Probability: Theory and Examples
(v5), Example 2.3.12; Williams – Probability with martingales, Exercise E.4.4]





Key results of this course

We recollect some important elements of this course.

Part I: Foundations

• Random variable: definition and associated 𝜎-algebra.
• Expectation: different results from integration theory, including convergence

results and inequalities.
• Probability inequalities: Markov inequality and its variants.
• Law of random variable: cumulative distribution function, density function,

characteristic function and calculations.
• Tricks and tips: be aware of expressions of type E[ 𝑓 (𝑋)], P[𝑋 > 𝑎], and careful

about interchanging limits.

Part II: Independence

• Independence: factorization property.
• Product space: Fubini theorem, joint law of (independent) random variables.
• Calculations: detecting independence, sum of independent random variables,

convolution and use of characteristic function.
• Sequence of random variables: Borel-Cantelli’s lemmas and Kolmogorov zero-

one.
• Tricks and tips: be aware of tail events, and check conditions before using Fubini

and/or independence property.



Part III: Convergences

• Convergences: definition and relations between different modes of convergence.
• Characteristic function: on the law of a random variable and the convergence in

law of a sequence of random variables.
• Applications: at least be familiar with one classical application for each mode

of convergence.
• Tricks and tips: remember to try characteristic for convergence in law, moments

for convergence in probability and Borel-Cantelli for almost sure convergence.



Mock exam: Probability Theory I

Rules:

• Grading: each exercise has two (2) questions. Answering one (1) of them cor-
rectly gains you eight (8) point, and answering two (2) of them correctly gains
you twelve (12) points. The maximum point is thirty (30).

• Items: lecture notes and textbooks are allowed. Calculators, programs, phones
and webpages (e.g. Wikipedia or forum) are not allowed. Do not share the exam
nor your solutions. Water and snack are recommended.

Exercise 24 (Uniform distribution). Let 𝑋 ∼ U([0, 1]), that is, 𝑋 has density
function 𝑝(𝑥) = 1{0≤𝑥≤1}.

1. Calculate the mean and the variance (alternatively, the second moment) of 𝑋 .
2. Calculate the law of 𝑌𝑛 = 𝑋𝑛 for 𝑛 ≥ 1.

Exercise 25 (Paley-Zygmund inequality). Let 𝑍 ≥ 0 be a random variable with
finite variance. Let 0 ≤ 𝜃 ≤ 1.

1. Show that E[𝑍1𝑍>𝜃E[𝑍 ]] ≤ E[𝑍2]1/2P[𝑍 > 𝜃E[𝑍]]1/2.
2. Show that P[𝑍 > 𝜃E[𝑍]] ≥ (1 − 𝜃)2 E[𝑍 ]2

E[𝑍 2 ] .

The last inequality is known as the Paley-Zygmund inequality. While Markov’s
inequality gives an upper bound on the tail of 𝑍 , Paley-Zygmund inequality gives a
lower bound and is often used as a partial converse of Markov’s inequality.
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Exercise 26 (Maximum of independent standard Gaussian variables). Let {𝑋𝑛}𝑛≥1
be independent random variables on (Ω, F , P), each one distributed as a standard
normal Gaussian N(0, 1). You will need the following fact: if 𝑋 ∼ N(0, 1), then we
have the following Gaussian tail bound: for all 𝑡 > 0,1

1
√

2𝜋

(
1
𝑡
− 1
𝑡3

)
𝑒−𝑡

2/2 ≤ P[𝑋 > 𝑡] ≤ 1
√

2𝜋
1
𝑡
𝑒−𝑡

2/2.

1. Calculate 𝑏𝑛 = P[𝑋𝑛 > (2 log 𝑛)1/2] and show that
∑

𝑛≥1 𝑏𝑛 = ∞. Deduce that,
almost surely,

lim sup
𝑛→∞

𝑋𝑛

(2 log 𝑛)1/2 ≥ 1.

2. Show that lim sup𝑛→∞
𝑋𝑛

(2 log 𝑛)1/2 = 1.

1 In practise (and in this exercise), it is enough to retain that P[𝑋 > 𝑡 ] behaves like 1√
2𝜋

1
𝑡 𝑒

−𝑡2/2 at
a first approximation.
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